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MULTIPLE SCATER1NG .kND WAVES IN RANDOM MEDIA
P.L Chow. W.E. Koher. G.C. PapaicoZlso ieds.)
,D Nonh4oUand PubUshin Company. 1981

BULK PROPAGATION CHARACTERISTICS OF DISCRETE RANDOM MEDIA

V. N. Bringi, T. A. Seliga, V. K. Varadan and V. V. Varadan
Wave Propagation Group, Boyd Laboratory

The Ohio State University, Columbus, Ohio 43210

The propagation of electromagnetic waves in an infinite med-
4um composed of a random distribution of ;.dent-cal, finite
scatterers is studied. The T-matrix of a single Isolated
scatterer, obtained by using the null field equation, is
used to make the equations for the field incident on a par-
ticular scatterer and the field scattered by it, self
consistent. The method we propose is well suited for com-
putations at wavelengths comparable to obstacle size and for
non-spherical obstacles. The attenuation associated with
the coherent field as predicted by our computations is
compared with the only two sets of experimental results
that can be found in the literature. Agreements and dis-
crepancies are examined and the range of validity of the
assumed quasi-crystalline approximation W is discussed.
Further improvements using the coherent potential approxi-
mation ( eM and the 'self consistent approximation' M ;
as well as improved models of the pair correlation function
are suggested.

i. INTRODUCTION

A treatment of the propagation of electromagnetic waves in an

infinite medium composed of a random distribution of identical finite

scatterers is presented. The coherent or average wave in such a med-

ium will be assumed to be a plane wave propagating in a homogeneous

continuum characterized by a "bulk" complex wave number. This wave

number will depend on both the frequency and the concentration of

the discrete scatterers causing the effective medium to be dispersive.
The aim of this work is to present a multiple scattering theory and

a computational method of obtaining such dispersion relations for

random media models including comparisons with some past laboratory

experiments.

The effects of multiple scattering on the coherent wave are of

great practical importance, in particular the dependence on concen-

tration at wavelengths comparable to scatterer size. At very lcow

concentrations (< 1% by volume) multiple scattering can be neglected

and each scatterer can be treated as independent. However, .n many
practical situations the concentration can range between It to 20%

where multiple scattering effects may be important. This is parti-

cularly reflected in the study of higher order statistics of the ran-

dom medium including radiative transfer theory which assume that the
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coherent wave propagates with a wave number that "s only dependent

on the forward scattering amplitude of a single scatterer. .ThiLs
result is obtained as a solution of the Foldy-Twersky inteqral equa-

tion for an infinite slab medium filled with large tenuous scatter-
ers Ilj. .owever, this well known analysis neglects correlation

oetween the scatterers, and recent advances in multiple scattering

theory by Twersky [2,3,4] have accounted for the effects of pair-

correlation at higher concentrations.

The theoretical/computational method presented here _s based on

a self-consistent exciting field approach and relies on tne T-matrix

which characterizes the response of an isolated single scatterer

to an arbitrary exciting field. The random medium is described sta-

tistically with respect to the random positions that each scatterer

can occupy through the first and second order probability distr-ou-

tion functions. Ensemble or configurational averaging together with

Lax's quasi-crystalline approximation (QC) yields a set of 'hole'

correction integrals. By assuming a plane wave behavior for the

coherent wave and using the extinction theorem gives rise to a hcmo-

geneous system of equations whose singular solutions yield the com-
plex wave number. The method is necessarily computational; however,

analytical forms of the dispersion relations are obtained in the low

frequency or Rayleigh limit for spherical and spheroidal scatterer

geometries. This paper closely follows the developments given by

the authors [6,7,81 for acoustic, electromagnetic and elastic waves.

Previous work which forms the basis for the present analysis is

given in Refs. [9-1k]. The numerical results obtained for a random

distribution of spheres are compared with the experimental results

of Hawley, Beard and Twersky [131 and Olsen and Kharadly (141.

One of the aims of this paper is to suggest improvements to the

QCA by incorporating the coherent potential approximation (CPA).

Certain multiple scattering processes that are neglected by the

QCA-CPA scheme can be restored by making the 'self-consistent approx-

imation' (SCA). If these improvements are used with more realistic

forms of the pair correlation function, then it may be possible to

extend the present formalism to a wider range of frequencies and
con cen trations.

2. MULTIPLE SCATTERING FORMALISM

Consider N identical scatterers located in free space as shown
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in Fig. I where 0i and 0 refer to the centers of the i-th and 2-th
scatterers. The scatterers are assumed to be bodies of revolution

with parallel symmetry axes, and the coherent wave is assume to

propagate along this direction so that the bulk medium is isotropic

and does not cause any depolarization. Let zr be the relative die-
lectric constant of the homogeneous scatterers.

We represent an incident plane electromagnetic wave propagating

along the positive z axis with wave number k and of unit amplitude

with an e-i -t tine dependence by

io( ) - e exp(ikz) (1)

where e is the unit polarization vector. With no loss of generality

we choose e to be either x or y.

The total electric field at any point in free space outside the

scatterers is the sum of the incident field and the fields scattered

by all the scatterers. This is written as

N

-s -

where Ei(r - ri) is the field, scattered by the i-th scatterer, at

the point of observation r. The field that excites the i-th scat-

terer, however, is the incident field plus the fields scattered from

all t1he other scatterers. The exciting field term ie is used to

distinguish between the field actually incident on a scatterer and
the external incident field, V, produced by a source at infinity.

Thus, at a point r in the vicinity of the i-th scatterer, we write

~(r =E
0

r)+ g 
5
( - r) , a ,r-r! 2a (3)

where 'a' is the radius of the imaginary sphere circumscribing a

scatterer (see Fig. 1). In this analysis, we have assumed that
there is no interpenetration of the imaginary spherical shells of

radius 'a' which circumscribe each scatterer.

The T-matrix formulation of scattering we adopt here is based on

the extended integral equation approach due to Waterman [151. The

scattered and exciting fields with respect to a particular scatterer

are expanded in terms of a complete set of basis functions

(M 7mn' 174) which are the vector spherical harmonics. These form



46 V\Bnngi el it

x
E e7

Figure 1. Random distLibution of aligned scatterers and plane
wave incidence in the z-djrection

x0 --

Figure 2. Geometry for the translation of the coordinate
system from 0.i to 0.i
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solutions to the vector Helmholtz equation and are given by

M 7 - rhn (kr) P
m
(cos fco (4a)qrmn ~ n ? c sisn mcp

N R1k) M4b)7mn 1m;m

where e stands for even or odd and refers to the choice of the0

trigonometr.c fnctions in Eq. (4). Wave functions regular at the

origin are obtained by replacing Hankel functions in Eq. (4) by the

Bessel functions j. and are denoted by (Re.M. n,ReNm )

The scattered field from, say, the j-th scatterer, :s£lr), can be

expanded in terms of "outgoing" vector wave functions with unknown

coefficients (B!) C
,  

as

7 kn

7~r 7 jB3 Ma (r- r C~ .4 (r -rU
n;-O e ,:n cZn j :Zn :,n

0

- a. (5)

The exciting field incident on, say, the i-th scatterer, Ee(r), can
1

be expanded into regular wave functions with unknown coefficients

abncin) as

! n r
7b.

2nReM c() ReR (i
n 0 z 0 en

a < - ri < 
2a , (6)

The choice of the basis set in Eq. (5) satisfies the radiation con-

dition at infinity for the scattered field while the choice in

Eq. (6) is a result of the regular behavior of the exciting field
Ze in the region a * jr - ;.; 2a.

i

It has been shown that, if the total field outside a scatterer

is the sum of incident and scattered fields, the unknown scattered

field expansion coefficients can be related to the incident field

expansion coefficients through the transition or T-matrix (5,15].

We extend this definition to the present case. Since (E f') is

Ii
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the total field at any point in free space, the expansion coeffi-

cients of the field scattered by the J-th scatterer may be formally

related to the coefficients of the field exciting the j-th scatterer

through the T-matrix:

31 T- T b]
-n _ Mp) Tmp, Tmp I

S i (7)

C3 LT :n)2 farnn)2  3
. -mp} :Tmp, - - mp

where summation is denoted by the repeated index convention. The

elements of the T-matrix involve surface integrals, which can be

evaluated in closed form for spherical geometry, while for scatterers

of arbitrary shape they can only be evaluated numerically. The

T-matrix for a single scatterer is of the form

T - (Q 1 )ReQ 8

where ReQ and Q are matrices which are functions of the surface S of

the scatterer and of the nature of the boundary conditions.

Substitution of Eqs. (5) and (6) in Eq. (3) yields

p - -pem(_i i - - - ' .
'b ReM (r. +c Ref (r-r.)f~ E kr;

p ~ ,~ ' .p :mp 1. -mp1

(9)

N - n )f~IS B nMn(r-r + Cz .jri n=O Z-0 n r

Note that the series on the right-hand side of Eq. (9) is expressed

with respect to the center of the J-th scatterer while the series to

the left is expressed with respect to the center of the i-th scat-

terer. The addition theorem for the vector basis functions will be

used to express the right hand side of Eq. (9) in terms of the center

of the i-th scatterer. Formulas for the translation of )M(r-r.),

9(r-; )} to an origin centered around the i-th scatterer can be

found in (16,17]:

WNW-

* ~ ~,!
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n -

- -M n -- -. n ' 'n- I

0 l8a)

+ . (n-mrn ReNm (r-r

:~n n

N ~~r r -
-e

where the geometry is shown in Fig. 2. Note that the ninum value
Sa for Eq. (6) to be valid the

condition for use of Eq. (10) is always satisfied.

:t then remains to expand the incident field E Cr.) in terms o
an origin centered at the i-th scatterer:

-o-- - r~

E r)- exp(ik;.C exp~ikz-(r-r.C

1 2.

e fkol 5 Re.101 ,(r-;i Ce g e ReN i5 Cr-r ' tll,

where =h g r . s s are the known expansion coefficients

and o x Substituting Eqs. 1a), (b) and (11) into Eq. (9)

gives

r ri an e c ae

P-0 mo T-e \bp p ~ :r
0

0 ik;j i) e ei- ( - RoNSeik fols Reiols +-gels else

N n n. , Zn j ( -in -
+ 7 7 7 ( Am C_ B )Rem

]ri n-0 Z-0 e n'.0 m' -O 7en ..n =n' mn
0 0

+ (3]i B tn js AR'o eRe 'N e12):Zn umn' n An' mn Cl2C

'I

dA
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vquation .2 is but an expansion of Ec. 3) in terms of vector

spherical hainonics with respect to an 3frii n 3 centered at the

i-th scatterer. A relation between the unxnown expansion coeff:-

clents bim ,ci ) of the exciting field and the unknown expansion

coefficients B1 CI ) of the scattered field can be obtained

from Eq. J2) by using the known arthoqonality properties of the

vector spherical harmonics. It may be shown that

ikj, N n Ibl I ek + ,:n, (13a)• <n'oln' :~n ln
'

oln oln' j;l n;0 Z0 -e
7=

N0

i eik + (B) ,  C (:b-dn -Zn~eln
,  

Lnkeln
,
}' lb

celn' ,e ]l n0 n0 e " n

0

where 7' denotes the sum over all scatterers except the i-th

scatterer.

Substituting Eq. (7) into the above expressions, we obtain a

self-consistent aet of equations for the unknown exciting field

coefficients as given in Eqs. (14a,b).

i ikj f N , n P
bk3 e + 7 7 7 7

oln' foln' I n;- ;0 _e c-0 m 0 - a

0 0

) b ( r:n 1 2
-,nln

..n *T c \Aon,
m mp MP Mpj _rnp o n

- n 21 22 B:n

_,'mPj Imp pnmp -mp,: oln'4

i 0 ik~i N , n
cein. geln, -1 7

j-1 n-0 Z 0 e p 0 mn e
o: 0

rzn bim * (T:Ln mp B
L mp j .. mp mp) eln'

Tmn
21 bo 1.an)

2 2  
l bI

_ -.. . . _ - --.---.--.. . .. .. .. . '
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Thus, the unknown scattered field expansion coefficients are elim-n-

ated through use of the T-matrix resulting in a set of equations

involving the expansion coefficients kb m, ) of the exciting

field on!%,. These coefficients are functions of the nos-t-cns of

all the scatterers.

3. CONF:GURATIONAL AVERAGING

In order to average the wave fields over the positions of sl

the scatterers we define the probability density function of f-ndinc

the first scatterer at r, the second scatterer at r, , and so

forth by pir 1 ,r2,.., rN. This probability density function ma,. ze

written as

p(r -)rPr.,r 2 ,'',' i

N ( r2.)... (p,,,..........r r,,r

where otr2 denotes the probability' density of finding a scatterer

at ri ' while p(r, ri) denotes the conditional probability of

finding a scatterer at r if a scatterer is known to be at r . A

prime in the first expansion of Eq. 415) means r, IS absent wi:.:e

two primes in the second expansion of Eq. (15) means both r. and

r are absent.

if the scatterers are randomly distributed, the positions of all

scatterers are equally probable within the volume V accessible tc

the scatterers, and hence

n ~ V

p(ri) = 6

.0V

where n is the unif--m number density of the scatterers and N is

the total number of scatterers. in addition, for nonoverlap of the

imaainary spheres circumscribing each scatterer we approximate the

conditional density as follows:

A
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or a

J -r-r, 2a

The form of the par-correlacion n Sq. 17) descrioes the isus

radiall' sv,:'etrLc Jistrioution Z.nction wltn an exclus:on surfaze

or "hole" corresponding to a sphere of radius -a. Th-s for m Df tne

zair-correlation is expected to be satisfactcry; at low concentr3-o 4 3
:orns c 4riere n,-a' - 3a . However, at hizer zcncentra-

tions Eq. .17) does not account for either the space cccupyn

croperty of the scatterers nor the increase in local order wtn

increasing c resultino from the well defined shape cf t:e neizn-

boring scatterers [21. The available volume V for lccatino -oe

center of the N-tn scatterer randomly in tne tota- volume V after

the first N-i scatterers have been previouslv located :s a func-

tion o concentra:sz n. For hard spheres, the minimtm value of
4 .

" = V - N-l' -'2a, = VI/-8c) . The :maximum vaue is zcnsderaczv
nizner than this. Since tns restrction applies onl. to -he cen-

ters of spheres and does not take into account teir hvsical dinen-

sions, this model is expected to be better in the Rayleich re;ime

when the spheres appear to be point particles see SecThon -'. us,

a realistic form of the pair correlation function must depend on

concentration as well as the distance between the two scatterers

under consideration. Twersky 2] nas considered concentration

dependent pair correlations and has extended the formalism to hocher

concentrations in tne Rayleigh regime.

'e denote the confiqurat:onal averace of a statistical quantit'v

as

-d ~ d- -

i =  
... f P(r. ,r2,.. , d ,r. drd r,, ... aij 1~ir ' '' ' ... N:

13b)

where in Zc. (18a) we have averaced over all scatterers except the

i-rh and in Eq. klSb), over all scatterers except the i-th and I-th,

*1
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and so on. Multiplying ooth sides of Eas. 14a,b by the probabili-

ty density given by Eq. 15) and using Eqs. '16)-18), we obtain tne
configurational average of b mpcnm p

ik I
-e b-e- n

0l Oln' -V - p -ifp. -mpi =ek& A '- n T:" "b

, oAin
.mp .m0 i] oln . .p -unp i

,.nn dr 19)

.mp <mp 13 oln''

e,.. mp .mp i;

.... - 21

- T 1<c . c~n * fln'

k-.mp mp ij_ eln' -.mp, .mp .

T<n 22 A - -n , dr (20).mp mp eln'

where V' denotes the volume of the medium excluding the volume of
N,

tne nole of radius 2a. For identical scatterers, can be
'=1

replaced by (N-1). Equations (19,20) indicate that the conditional

average with one scatterer fixed, viz., -b' > -Pc is, _pi•' p i

given in terms of the conditional average with two scatterers fixed,

VIZ., ',c m 1 1. Lax [10] has suggested a quasi-
I p ij mp ".ij

crystalline approximation (QCA) to close the system:

L mp i ' mp 'j

i * j (21)

<c) >. . <c > '.mpij - .mp3

The validity of this approximation is examined in Section 8.

A

i ,..C._
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4. THE 2-HE.ENT WAVE

The heirarchy of equations implied by Eqs. (19,20) is truncated

by =n':oeng the .CA, i.e., Eq. (21) . A =lane wave solution for the

system of equations qiven by Eqs. .19) and -70) is assumed, usinc an

e-fec-ve wave nu: ber K to zharacterize the bulk medi'n:

o i- .e
b~ p  = I" Y 'Xm e

-D 1

.np

4here . and Z are unknown constants. The effective wave

_mnD -mp

nurser R is assumed to be parallel to that of the incident wave

w-:n in the present case is along the z-axis. Since the s:mmetr:

axes Do the scatterers are also assumed parallel to the z-axis, the

DU- medi-xn is isotropic. Substitution of Eq. 22) in Eos. 19) and

, - - ! es

.,e e "oln' "m n

n -n 1.2 -, n 2v
T Y T m _ A n.mp Y.mp mp mp o' ., Mp _mp

22T 
;'

e J d r 2 3 a '
+ .mp _ oin

Zn eln', = ei lno '~ i
p
o

pm

n. , . .:zn 21

, Zn' 
1 2  21

._ .mp, Ymp + mp, mp en .mp anp

+ T:n] 22 A n . eKI dr 23b)
amp, .mpJ]eln

where 5. is the Kronecker delta and applies to the T-matrix ele-

ments of rotationally symmetric scatterers, viz., no azimuthal mode

coupling.
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it remains to perform the intearation over V' in Ecs. Z2a,,

the details of which are given in Appendix A. To derive tne 4isper-

sion relations, we apply the extinct-on theorem to the two sets _"

terms in Ea. t23) after inteqratlon each satisfying the wave ezua-

tion with wave numbers K and k? as discussed in detail by Tersk:"

(41 and Varadan, Varadan and Pao {81. Accordin. to the ext:ncticn

theorem the integral 1. which is evaluated over a surface S.

precisely cancels tne incident field (see Appendix A;. By equat:ng

the remaining terms, we cbtain an infinite system of equations for

the unknowns:

'-6c n'nY oln' 2- -K) nP.-O F;OH Yl_ "°in i

nka) p0 1= i • "olp

T ln 21 - - oln iz

00 ( olp, keo elp_ "elp

(nn ', ( T eln 22 
-

o n . elp eo n,n', )' 24a)

in' 6c T n -
6 Zel n , i -Y

(ka) -{Ka) n-0 p-0 - n-n''

,'i - -. 2

in , n ' , K + T , n 2 1 n , n ' , ) + T O l l -

oe Olp ee - sip

e 2 
-,

*" loe (nn',,) T 
1 

= , (n,n',) . . (24b)

We define c as the effective "spherical" concentration which

equals 4-a
3
no/3. The term (JH), is given by

(JH), . 2ka j,(2Ka) h (2Ka) - 2Ka h. (2ka) j (2Ka) . (25)

The factors 0o (n,n',I) and oe(n,n',\) are given in Appen-

dix B. They are related to those given by Cruzan (17] which are

also summarized in Appendix B.

The set of equations given in Eq. (24a,b) are homogeneous and

linear in the unknowns (Yoln' Zeln ) . For a nontrivial solution, we

require that the determinant of the coefficient matrix vanish which



-elds a relation for the effective wave number K in terms of k

and the T-matrix of the scatterer. This is the dispersion relation

for the scatterer-filled medium. Equations (24a) and (24b) form a

general expression valid for any arbitrary collection of scatterers

provided the scatterers are identical and rotationally sy.metric

with parallel orLentation along the K vector. Since the T-matrix

is the only factor that contains information about the exact shape

and boundary zonditions at the scatterers, one can also use the

above formalism for a collection of perfectly conducting, dielectric

or multi-layered scatterers. The T-matrix for such various scat-

terers has been studied by many authors (23,24,251.

5. LOW tREOLENCY SOLUTIONS

In the Rayleigh or low-frequency limit, the size of the scat-

tere- is considered to be very small compared to the incident wave-

leng.., it is then sufficient to take only the lowest order coef-.

ficients in the expansion of the fields. In this limit, the elements

of the T-matrix can be obtained in closed form for simple shapes

such as sphere and spheroid (221:

Sphere: T ell, 12 2 i(ka) 
3 

-- Ofk~a 26'
ell a 2 '"

ell' i~ka)-. ' ka
)

26
Sherid T

Speoi: Tell, 22 i(ka) 3 r-1l)f 212)

el 2 +2) - 3(r -I)f (e)•rr

where e is defined by e -,(a'b)2-l for the oblate spheroid i'a'

and 'b' being the semi-major and semi-minor axes, respectively).

The functions f!, and f2  are given by

f (e) - e - tan-le - 1 - tan- 2a)
• e

S4 1
fe) 4 128b)

From Eq. (24b) and using leading terms of the T-matrix of 0(k 3a3

we obtain the following result for the unknown Zell*

IA
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6c ; ell 22 1 22

e. ka)" - (Ka) -ell ell: 0 'ell -el:

Z'9

Dispersion relations ire obtained by substituting Ea. (26) cr 27;

in Ea. i29) and using the leading term in the expansion for the

Besse! and Hankel functions compos:ng :JH), and IJH),:

Shere: r +230

1 c1

Spheroid: 2- (3,2 r r

r

4-r (31)1 - 3. l'£-:

r

Equation (?0) is recognized as the dispersion relation of the

Clausius-Mossotti form.

If the concentration c < 1, the dispersion relations silrplif%

to

Sphere: I 1 (32)

(9c/8) ( rl

Spheroid: + r (33'

*Equation (33) can be written in terms of the forward scattering ampli-

tude F(O):

-a. t
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2-n

- u. 0) 34K k.

which .n this case ;s valid only for vet..s -ow zoncentrations and _n

the Ra':ole_,h 'imit.

6. DISPERSION AT HIGHER FREQUENC:ES

To study the dispersion at resonant and nizner frequencies, we

must consider niger powers of ka , and tnis implies that a large

number of terms (Y oln,Z eln) must be Kept in tne expansion of the

average field. This is best done numerically. A block diacram of

the FORTRAN program written for this purpose is shown in Fig. 3.

The blocks identify major subroutines which perform the followina

functions:

MAIN The main program sets up the basic loops so as to calcuiate
K for various frequencies (ka) and concentrations c)

RDDATA This subroutine is used to input data, e.g., scatterer size
ka), concentration (c), matrix sizes, etc.

RTINT This subroutine calculates the initial guess for K in the
Rayleigh limit at a given concentration c using Eqs. 3C
or (31).

TMAT This subroutine calculates the T-matrix for given scatterer
chape and size (ka). Current maximum size is 40 - 40.

CGRTO This subroutine searches for the root in the complex plane
given an initial guess) by attempting to force the deter-

minant of a coefficient matrix (C) - 0.

AUX This subroutine sets up the coefficient matrix according to
Eqs. (24a,b). Maximum size _s 40 , 40.

AB This subroutine calculates the factors ,oo0 'oe as given

in Appendix B.

TRIXJ This subroutine calculates the Wigner 3-) coefficients.

CXMTX This subroutine calculates the det C for a given K using
standard Gauss elimination.

The computational procedure is based on forming the coefficient

matrix C acccrding to Eqs. (24a,b). For a given ka , the roots

of the equation det C - 0 are searched in the complex K-plane

using an iterative root searching algorithm which employs Muller's

method. Good initial guesses for K were provided in the Rayleigh

limit by Eqs. (30) or (31), and these could be used systematicall'.
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to obtain converaence at Increasingl, hicher values of ka. Similar-

ly, the dependence of v on concentration at a fixed frequenc.

could be computed. The real part of K , K 1 , determines the

pr.ase velocity while the imaginary part, K< determines the

coherent attenuation.

COMPUTAT:ONS k:D COMPARISONS WITH EXPERIMENTS

A ma~or aim of the computational method presented here is to pro-

.ide a means of studying the dispersion cnaracteristics of discrete

random media at higher scatterer concentrations. Very few laboratory

measurements of coherent wave attenuation and phase shift can be

found in the ooen literature. However, results of two such experi-

ments are presented here [.3,141 and compared with computations.

The first experiment refers to the work of Hawley et al. t13)

who measured the coherent wave attenuation and phase shift through a

random assembly of dielectric spheres (-r - 1.034) blown about by

turbulence producing fans. The measurements were performed at fixed

microwave frequency corresponding to ka = 11.8 and at various con-

zentration levels up to maximum packing.. The attenuation measure-

ments are shown in Fig. 4 together with computations using the

present theory and that used by Hawley et al. The present theory

agrees well with measurements up to c - 0.32 , beyond which the

attenuation is predicted to decrease and goes to zero at c = 0.54.

The dashed curve is based on the concept of the "effective" concen-

tration which accounts for the decreasing available volume as the

number density increases. The "effective" concentration equals

c'(l-c) and the dashed curve in Fig. 4 reflects the attenuation

constant as a function of this altered concentration. The computa-

tions now agree well with the measurements. The coherent phase

shift, - , relative to free space is plotted as a function of con-

centration c in Fig. 5 where the experimentally adjusted values

and the computations are in good agreement. Attenuation in the

Rayleigh limit (ka = 0.05) for the same scatterer properties is

shown in Fig. 6 based on the present theory. The computations fail

for c , 0.125 since Im(K) becomes negative. This feature is

repeated in the Rayleigh limit for other values of -r as shown

later. At very low concentrations, the form of the pair correlation

function as given in Eq. (17) seems valid. As the concentration

increases, the available volume for the other scatterers decreases.

A
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Assuming that the centers of 'N-l) scatterers are randomly located
in a gven .,olume V, the minimum available volume Va  for locat:ng

the =enter of the \-th scatterer is V 1 . - - 2a) 3- V

where -z is assumed that each scatterer center is surrounded by a

hole of radius 2a and that these holes do not interpenetrate. Now

V - 0 as c 0,125 so this may explain why the computations

cause :m(K) 0 for c , 3.125 , at least in the Rayleigh limit.

F3iure 7 shows computations in the Rayleizh limit for spnheres with

r = 3.168 and ka = 0.05 compared with the analytical results of
Twersk [21 who obtained the leading effects of pair-correlation at

low frequencies. His formula reduces to !m(K) - L n07s
W  

where
4 22

W = (1-c) /(+2c) , no  is the number density and 7s is the
total scattering cross section of a lossless sphere. The agreement

is good for c , 0.05 while great discrepancy is exnibited at

higher concentrations. The concept of the "effective" concentrat-cn

does not significantly alter the results at such low concentrations.

To obtain better agreement at higher concentrations it is necessar'.'

to use a more realistic form for the pair-correlation function de-

fined in Eq. (17). A factor containing some dependence of

p(r. ri) on r has to be introduced, but the form for this

dependence constitutes a difficult problem in statistical geometry

(181.

A second set of coherent wave measurements by Olsen and Kharadl'y

(141 at relatively low concentrations (c - 0.007, 0.014) and at a

single microwave frequency (ka - 4.67) was available for comparison

with computations. Their measurement procedure, based on ensemble

averaging made on a random collection of dielectric spheres

= 2.26), exhibited greater control on the statistics of the

scatterer distribution yielding accurate measurements with low stan-

dard errors. Attenuation as a function of ka is shown in Fig. 3

at c = 0.014. The experimental value is also shown with its esti-

mated standard error. Figure 9 shows the same results at c - 3.0C7.

As expected, the agreement between theory and experiment is excellent

at these low concentrations. Figures 10 and 11 show the phase shift

relative to free space as a function of ka for c = 0.014 and

n.0n7, respectively, together with the experimental values. Again

aqreement is good and within the estimated standard errors. Figure

12 shows the computation of attenuation vs. concentration at

ka = 4.67. The values based on single scattering theory, see

A
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E-. f4) , are also shown together wit. the dasned curve oased rn -me

"effective" concentration concept. :n this case, single scattering

theor'% seems to -e valid for D.15. The comoutations cause

m for c D.6 wnile the dashed curve does not exnizIt

trs phenomenon. Again. the val-ditY of tne =omputat'_ons it hi=ner

loncentrations -s not established. Previous computations presentec

.6,7! for concentrations of ).20, as a function of ka or

frequenc,:-), exhio certain "null" characteristics for the attenua-

tion at certain ka .'alies. This chenorenon -s not real and is

:aused b, :,n K;2 0 at tnese Hoaes. ncwever, :he :omtutations

presented in 16,71 for c = ".)5 and ).!', are correct.

8. QUASI-CRYSTALL:NE APPROXIMATION CCA

It is instructive to examine the phv.s;cal impl-cations of terms

of the form b-m that occur in Ea. '211. This is the excit-nc

fieid coefficient of the :-th scatterer when the posLtions of a~l

scatterers except the 0-tn and any other scatterer denoted by '-'

are averaged over. When the numbe: of particies in the system is

larze this may be thought of as the field exciting the i-th scat-

terer in an effective, macroscopically homogeneous medium containing

two scatterers ':' and ':'. The QCA implicitly omits all multiple

scattering processes that can take place between 'i' and

Efforts have been made to restore Such scattering processes hv

Twerskv (21 and by Schwartz and Ehrenreich [I9] who, in a different

context, discuss the contribution of clusters of two or more

particles as in systems with short range order.

in the classical context, it :s also important to discuss the

dependence of QCA on the frequencies under consideration as well as

on tne concentration of the scatterers. ScatterLnc in a two scat-

terer configuration is Zuite dependent on the ratio of the distance

'Zd' between the scatterers to the overall dimensions '2a' cf tne

scatterer. Numerical computations suggest that multiple scattering

effects at any frequency of the incident wave will be small if d, a

is large. Thus, the 2CA is expected to be zood for sparse concen-

trations, ,1 1%. At such concentrations the pair correlation func-

tion as used in Eq. 17 is also expected to be good. The aralytical

results we obtain at long wavelengths give ample proof of tnis as

shown in the previous sections. Most authors cited previously as

well as Talbot and Willis (201 in their recent work seem to agree

4
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tnat the CA is ;ood at sparse concentrations. However, most of

these a ers cresent only long wavelengtn results. Further, lax .21;

comments immediately foUlowing the definition of the ;CA that :t is

ood for dense systems and exact!,. :alid for systems with a :rysta-

line structure. These are contradictory observat-ons about the same

approximation and needs to be studied further.

Dur =omcutations for var-ous concentrations, but more Important-

for tarious values of ka 'the non-d:mensional wavenuroer) sua-

gest that even at low values of a ).05 , the model 'a-ls ;f the

v*.oLume concentration c exceeds 1.5%, whereas at ka values Z.'

or more, the :CA leads to reasonable results for tne bulk protaga-

tion constant at all values of the concentration in soite of tne

poor model used for the pair correlation function. We expect all

types o multiple scattering effects including cluster effects to be

pmportant at concentrations %0.1 or more, but it should be noted

that the QCA type approximation neglects only repeated scatterina

between pairs or within a group of scatterers. it is also important

to note that at wavelengths comparable to obstacle size and higher,

:.e., ka • 3.0 , the scattering is mostly in tne forvard direction.

Thus, in this case repeated scattering should not be important,

since the backscattered wave is s:cnifcantly smaller than the for-

ward scattered wave. This would help sat;sf'y the QCA and may ex-

plain why the computations shown in Fig. 4 for ka = '-.S are in

reasonable agreement with experiment at all values of the effective

concentration. It would appear that in the context of classical

systems, Lax's statement about the validity of the QCA for dense

systems should be qualified by the phrase, 'at high frequencies.'

it would be interesting to study how tne results will change with

improved models of the pair correlation function, Then it would be

possible to comment on the sens~tLvity of the results to the effect

of the pair correlation function and the QCA separatei'.

9. RECOMMENDATIONS FOR FUTURE WORK

It is obvious from the preceding discussions on the CA as well

as the numerical results that the two ma)or improvements required

are for the QCA as well as the pair correlation funotion, so that

good results can be obtained for all concentrations even at long and

intermediate values of the wavelength. In a review article, Lax

[211 has suggested that in the quantum mechanical context, the CA

- . - . . .. . - - , .. . . . . l iI ll - = b i i . . . m ,• = . . .. ..
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could oe improved oy using modified propagators for the fields. :n

the classical context, tnts implies that on the average, since par-

tizie scattering takes place in a macroscopically homcogeneous nedi-

im, and, in tnis respect, this idea is the same as the Conerent

potential aporoximat-on CPA) of Solid State Phvs:cs. The receated

multiple scattering between pairs of scatterers or cluster effects

can be improved by making the self consistent approximation SCA in

addition to t-e CPA.

For -ne purpose of discussion of these ideas witnin the 7-matrix

formalism civen earlier, we denote bv o. and e ne -felds scat-

tered by and exciting the j-th scatterer, respectIvely. The expan-

sion ccefficients of these fields as given in Egs. (5,6, are denoted

by 33 and b- , respectively, omitting all subscripts.

The CPA can be expressed succinctly as

B 
,  

= T( ) b] -5)

where the T-matrix relating the exciting and scattered faeld coeffi-

cients is evaluated using the bulk propagaticn constant K for tne

embeddinc medium. Thus the CPA imclies that the field scattered by

a single obstacle in the presence of several others when averaced

over the posi:ion of all scatterers is the same as the field tnat

would be produced by a single particle embedded in a macroscopically

nomoqeneous medium described by the propagation constant K. The in-

corporation of the CPA into the previous formalism involves changes

only in the computations and a redefinition of the T-matrix.

would be interesting to see the change, if an,.., in tne numerical

computations as a result of invoking the CPA.

The idea behind the 'self consistent approximation' SCA; is

somewhat more subtle. From the discussion in the section on the 'CA,

it is now clear that .CA-CPA neglects multiple scattering between

two fixed scatterers. The SCA as defined by Schwartz and Ehrenreich

[191 restores this by stating that

<BD>i - T(K) 'b3
>  

k36)
i2

where TK) is the 'T-matrix' of scatterer 'jI in the presence of

scatterer 'i', in the effective medium with propagation constant K.

Expressions for t(K) as given by Peterson and Strom [16] may be

written as

.. ,.-
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= R- 2, Ti - '-r T:

:1 - 7 -r, jT~r* j -r 2

where is a compact notation for the translation matrices A ant

3 introduced ;n Eq. 10). The R matrix is simply the part sf

that is reqular at the origin, i.e., for r = 2. All matrizes

in Ez. 3 a are obtained using the bulk propagation constant for :he

n-ost medi-um.

We observe that T K) explicitly depends on r,. the dizzance

between 'i' and 'f and hence will be involved in the integrati:ns

in Ecs. Ai-A!2). The integration procedure will no longer be sim-

ple as before and t.e SCA may oe rather difficult to enforce in com-

putations, especially if more realistic models are chosen for tne

pair correlaticn funct:on.

improvements :o tne pair correlation function must take int:

account the increase in short range order with increasing concentra-

tion in addition to enforcing tne :ordition of no interpenetration

of particles. Talbot and W;ilis [20) in their recent wor, nave re-

viewed several models that depend on concentration. They discuss

in particular two models b% Matern '26: that de=end on the :oncect

of an available volume and hence are valid only. for li.5%.

Talbot and Willls also suagesr the Perzus-Yevick 2-) model for the

pair correlation function whicn is valid for z - 0.3.

Incorporation of the CPA as well as =mproved models of the pair

correlation function ,nto our computations are in progress. We nope

that the-Y will shed some lizht on the sensativ.tv." of multiple scat-

tering theories to approximations like ICA and SCA as a function of

frecuency and scatterer concentration. Needless to say additional

experimental results are required for comparison with these :ompu-

tations.

APPENDIX A

Consider the following integral whicn appears in Ea. 22a :

Y .A , , .e
p Aoln
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We observe that Aon n ontains 3 term son, -l); wnicn upon

intecration vanishes for '.0I. Also, on!. certain combinaticns of
-ield a non-zero value ipon inteorstio n -o unction wLtn tne

properties of the T-matrix elements for rotatonally s*:.mmetric

scatterers. Thus the above integral reduces to evaluation of

IK -r 
n r.'.1e di, "oon'n''

olp r.' . n' 00Yolp

rl-r

; n, r )P cos- )e -dr, Al

where the expansion for AO
ln  

has been used and . '

contains certain combination of Wigner 3-: symbols '.6,. Now, we

consider the intecral in 'Al)

I e 3 kr )P cos- )dr A.!A  - .- I'k 1 i 2
ri-r j  2a

Since K i Kz and r 2 = ri - r , we expand expi-iz.r, In

terms of the spherical harmnics

exp(-iKz. ) = exp(-iKr-cos -n. n'Kr)

P (Cos 1.) 'A)

Substituting )A3) in (A2), we obtain

]n(Klj)Pn .(COS )h, (kr )P (cos1 )dr A4
r •2

'2a

Observe that the two terms jn(Krl.)Pn and h (kr )P. satisfv the

scalar wave equation with wave numbers K and k , respectively.

Def ining
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-h, (krI P , cos4

]n ri '1p *cos

n n

Use of ,;reen'3 theorem in tAS) reduces :t to

II

I .I - _2, - -

I- - - 1 *dS A61

3 .2a

where S refers to the surface of a sphere of large radius cen-

tered around the -th scatterer and S2  refers to the surface of

the hole centered around the 3-th scatterer. The integral over S2a

:an be evaluated in closed form

S ,7( - 7(a.) (-n)(2a) s;n. . d d:

S 2a k2 
-

where n is the unit outward normal to S,. The above integral

reduces to

(2a)2 s>nd d

S2a

Upon substituting the previously defined expressions for i and

3  
and using the orthogonality of the Legendre polynomials in ,Ak

we get
8-a2
8-a (JH)* (J H) a .\H
k -t

where iJH) is given by Eq. (25) and is tne xornecker delta.

Hence, I defined in .A6) reduces to



whore * re~ers !o~" :n ntegration over S wrun is :)Dtar.ed z

is:'a :ne asvrnptotice xcarnsion for n kr, 3S r o

Tt nte.aral d efined in A2, now reduces to

tn taa -.- n-n-~ rH e c .e s Z)

v)IIe- .- n-n'

The trr a)n~ peritors '..;' Ire~n

gn i ve i-6

n n-' n -

wher 's mn ir r 3- s*n

'3a
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,eo (n,n' ,, = -,e n,n

n'-n.', (2%+l) '2n'.)l - nn+l) _,'2

2n' (n'- +1 W -n- 1)'T

- )2 -...~),., - n-n' . , )2 n~n'-l) 
2
_

n n' - n. n32)

The above factors can be expressed in terms of factors given by

Cruzan 171 as follows

-oo(n,n', ) )ee(n,n',-) = (-i) a(n,n', ) a(l,n,-i,n' 3

,eo~~n' =-oenn,n', ) b~n,n',,) a(l,n -l,n' ,.-i)
B4)
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ABSTRACT

The coherent electromagnetic wave attenuation in an infinite medium

composed of a random distribution of identical, finite scatterers is

studied. A self-consistent multiple scattering theory using the T-matrix

of a single scatterer and a suitable averaging technique is employed. The

statistical nature of the position of scatterers is accounted for by ensemble

averaging. This results in a hierarchy of equations relating the different

orders of correlations between the scatterers. Lax's quasicrystalline

approximation (QCA) is used to truncate the hierarchy enabling passage to

a homogeneous continuum whose bulk propagation characteristics such as

phase velocity and coherent wave attenuation can then be studied. Three

models for the pair correlation function are considered. The NMatern

model and the well stirred approximation (WSA) are good only for sparse

concentrations, while the Percus-Yevick approximation (P-YA) is good for

a wider range of concentration. The results obtained using these models

are compared with the available experimental results for dielectric

scatterers embedded in another dielectric medium. Practical applications

of this study include radar meterology and communications through

hydrometers, dust, vegetation, etc.



I. INTRODUCTION

We consider the propagation of plane coherent electromagnetic waves

in an infinite medium containing identical, lossless randomly distributed

particles. Our aim is to characterize the random medium by an effective

complex wave number K which would be a function of the particle concentration,

electrical size and the statistical description of the random positions of

the scatterers. The imaginary part of K describes the coherent attenuation

which is due to multiple scattering only since the particles themselves

are assumed to be lossless. The understanding of the behavior of Im(K) as

a function of particle concentration c and/or frequency ka is very

important in many practical applications, including wave propagation in

the atmosphere and oceans and whenever distribution of random scatterers

influence electromagnetic wave behavior.

The theoretical formulation presented here closely follows the

procedure described in Varadan et. al. [1979] and Bringi et. al. [1981].

This approach is based on a self-consistent multiple scattering theory

and relies on the T-matrix [Waterman 1971] which relates the field

scattered by a particle to an arbitrary exciting field. The statistical

description of the random position of the scatterers is used to define a

configurational average which results in a hierarchy of equations relating

the different orders of correlations between the scatterers. Lax's

[19S2] quasi-crystalline approximation is used to truncate the hierarchy

which results in the usual "hole-correction" integrals. Following Twerskv

[1977, 1978 a,b], a radially symmetric pair-correlation function is

introduced and approximate models are chosen from Talbot and Willis [1980].

. . . . . . . .I II I I I I I . . .... --- II . . . .m ln l .. . .. ..
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The "well-stirred" approximation (WSA) was used previously by Varadan

et. al. [1979] and Bringi et. al. [1981] which assumes no correlation

between the particles except that they should not inter-penetrate. In

particular, the WSA gives unphysical results for c > 0.125 at the Raleigh

or low frequency limit.

In this paper, we consider two other pair-correlation functions,

viz. (i) the Matern 11960] model and (ii) the Percus-Yevick [1957] model

for a classical system of hard spheres. Computations of Im(K) are presented

for dielectric scatterers in a dielectric medium, using the above three

models as a function of frequency and concentration. We also compare our

solution to some recent optical propagation experiments conducted by

Ishimaru [1981]. Sample computations are also presented comparing the WSA

and the single scattering approximation for a rain medium.

2. FORMULATION OF THE PROBLEM

Consider N identical, finite dielectric scatterers that are randomly

distributed either in free space or in a different dielectric medium. The

scatterers are homogeneous with a relative dielectric constant of E , their
r

centers being denoted by 01, 0, 0 . ON . They are assumed to be bodies

of revolution with symmetry axis parallel to the z-direction. Monochromatic

plane coherent electromagntic wave is assumed to propagate along the syimetrv

axis of the scatters to satisfy the condition that the efifective medium be

isotropic and polarization insensitive. The time dependence of the incident

field and hence the fields scattered by the individual scatterers is all of

the form exp(-jut) and this is suppressed in the equations that follow.

!, 4'
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Even though the theory presented here is valid for spheroidal scatterers

(Varadan, et. al. 1981], we present numerical results only for spherical

scatterers in order to compare our results with available experiments.

Let E0(r) be the electric field arising from the incident plane wave

and E (r) the field scattered by the i-th scatterer. Both these fields

satisfy the vector Helmholtz equation. The problem at hand reduces to

computing the total wave field at any point outside the scatterers,

satisfying the appropriate boundary condition on the surface of the scatterers

and radiation conditions at infinity.

The total field at any point outside the scatterers can be interpreted

as the sum of the incident field and the fields scattered by all the

scatterers, which can be written as

N
E(r) = E (r) + .= r-r. i

i=l

S ,
where E.(PiJ is the field scattered by the i-th scatterer at the observation

point r. However, the field that excites the i-th scatterer is the incident

field E0 plus the fields scattered from all other scatterers except the i-th.

The term exciting field e is used to distinguish between the field actually

incident on a scatterer and the external incident field Eo produced by a

source at infinity. Thus, at a point r in the vicinity of the i-th

scatterer, we write

NE r ) = E° ( ) . , j p , o < a
-~e.~ L; a _ o~ ~ h (

I j~i .1
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where 'a' is a tNpical dimension of the scatterer.

The exciting and scattered fields for each scatterer can be expanded

in terms of vector spherical functions with respect to an origin at the

center of that scatterer:

Er) b b Re
1 Tl Z=l n=O 0: Znu -2no

(3)

= bi  Re
rn inin

Er in (4)
n

where the vector spherical functions are defined as

yn(r) = 7 x r hl)(kr)] Yni(,* (5)

- -+ 1 -+

S 12 ,(r) .(6)

In equations (3-6), k is the wave number; h(1) is the Kankel function of the

first kind and the Y na(e,) are the normai:ed spherical harmonics defined

with real angular functions. In Equation(3), the exciting field is expanded

in terms of the regular (Re) basis set (Re i ) obtained by replacing h(1) in
'In n

Equations (5-6) by j , the spherical Bessel functions of the first kind. Thus,
n

the choice of the basis set in Equation (4) satisfies the radiation condition

at infinity for the scattered field, while the choice in (3) satisfies the
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regular behavior of the exciting field in the region a < < 2a. The

superscript i on the basis functions refer to expansions with respect to

O., and b i and Bin are the unknown exciting and scattered field coefficients.

We also expand the incident field in terms of vector spherical functions:

to( ikz' i j x ~ £i
=a Re p ( (7)

Tn

where a are the known incident field coefficients.Tn
bii

The unknown coefficients b can be related to B by means of any
in Tn

convenient scattering operator, in this case we employ the T-matrix as defined

by Waterman [19711:

i i I
n n ' n,-'n' iln' (8)

Substituting Equations (3), (4) and (7) in (2), we obtain

N
' i ikz.r i  I-i N

i n in n :n Tn n
n in jea n

Since the field quantities are expanded with respect to centers of each

scatterer, we obtain Equation (9) with basis functions expanded with respect

to i-th and j-th centers. In order to express them with respect to a common

origin Oi, we employ the translation and addition theorems for the vector

spherical functions [see, for example, Bostrom, 19S0]

which may be written in a compact form as follows
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-II

STn, -n' T n

n Tn,T'n' ij T n 1 1

where p. r"-r. is the vector connecting 0. to 0., atnt is the

translation matrix for the vector functions and R ,, is a matrix with

spherical Hankel functions in a Tn 'n' replaced by spherical Bessel functions.

Employing Equations (8) and (10) in (9) and using the orthogonality

of the vector spherical basis functions, we obtain the following set of

coupled algebraic equations for the exciting field coefficients biTn

bI=eikz'ri a a (Pi)T bj 1 (11)
n itn + n 'ntn,rn,t'n' T'n' (11I

From Equation (11), it can be seen that the exciting field coefficients

of the i-th scatterer explicitly depend on the position and orientation of

the other scatterers. In this paper, we consider a random distribution of

spherical scatterers and the case when N and the volume occupied by the

scatterers V such that N/V = n is a finite number density. For such
0

distribution, a configurational average of Equation (11) can be made over

the positions of all scatterers [see Varadan et. al., 1981] with QCA

[Lax, 1952] to arrive at an equation for the configurational average

<b >. of the exciting field coefficients with one scatterer fixed:
Tn 1

bi > ikz'ri
<b izr 'a (N-1) [ k T

Tn 1 Tn ,n ,Tn
zn' T n°

(12)

p (-r

T'n ' T n 1 1 -1 1 1

r

v 3 1 -:1
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where p(rjrir) is the two particle joint probability density. In obtaining

the above equation, we have assumed that all the scatterers are identical.

We now assume that the average field <bi >. (the coherent field)Tn 1

propagates in a medium with an effective complex wave number K = (K1+iK2 )z

in the direction of the original incident field in the discrete random

medium:

<b > i Y e (13)
lami i lIm9.

< i 2 iK-r i

<b > i Y, e (14)
2ami i .am2

Substituting Equations (13) and (14) in Equation (12) and invoking the

extinction theorem to cancel the incident wave term in (12), we obtain

the following eqqations for the unknown amplitudes Y and Y2amZ

.n' = n + n v  p
i ll~n' i(-0~ In= l p = nn'li

Up / IZ ) X21nn

+ Y 2'I'2 T 19n 12 1 (nn',m) T2. p  2 ,mj ,22p T2Zn 2II

;EO~l



n 7n=i p m
22Zn' L 

Tm
=1 M= n-i'l

+ Y 22~ f T~~ )l:n . ( T )Z 21( ) b

where

i m(K,k,c) 6c , 2ka j m(2Ka) h'(2ka)
m (kar-(KaY m

-2Ka h m(2ka) jm2a]+4c f xgx)] hm(kx) j (Kx) dx
x=1

4(n,n' ,m) =p(n,n' ,m) .n' -n-m (2m-1) (2nl+I
11 L 2n' (n'+l)j

[ n~l 11/2 [n(n+1) + n'(n'+1) -m(m+lj(8

il (n



x~n' - 1 2 fl'n'-n+m-I 2Nm+lJ (2ni1X, (n 'n ' ,m j = - l (n, n''m =n -i2 '( '

[ [-1~ ~ 12 \ • \ L19

nF (ntn l) m - n-n' 2 ri-r,'* 2-I - 1 1,2

In the aucve equation, c 4iT n a /3 is the effective spherical concentration.

For plane waves propagating parallel to the rotational axis of symmetry of

scatterers, only Z = 1 contributes, and also only ccrtain combinations of D

yield non-zero i-matrix elements which are used in Equations (15) and (16).

In Equation (17), g(x) is the pair correlation function which depends only

on ;_X = 'p ij due to translational invariance of the system under consideration.
iI

To obtain expressions for g(x), a description of the interparticle forces is

needed. In our statistics, the dielectric scatterers are assumed to behave

like effective hard spheres of radius 'a' where 'a' is the radius of the

circumscribing sphere, see Figure 1. Wertheim [19631 has obtained a series

solution of the integral equation for the pair correlation function derived by

Percus and Yevick [1958] for an ensemble of hard spheres. Throop and Bearman

[19651 have used the Wertheim result and provided tabulated values of g( .)

as a function of x for several values of c. Plots of g(x) vs x is shown in

Figure 2.

At low values of concentration c, g(x) : 1, see Figure 2 and hence the

integral in Equation (17) is negligible which results in a system of uncorrelated

hard particles. This is ^hat has been referred to as the well stirred

approximation (WSA) and yields the 'hole correction integral' as outlined by

Fikioris Waterman [1964] and by us earlier. If g(x) 1, one can regard the

*1
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Equation (17) as a modified 'hole correction integral' which is of the same

form as used by Twersky [1977, 1978].

Equations (15) and (16) are simultaneous linear homogeneous equations for

the unknown aimplitudes Y .. For a nontrivial solution, we require that

the determinant of the truncated coefficient matrix C vanishes, which yields

an equation for the effective wave number K = (KI+iK 2) in terms of k and the

T-matrix of a scatterer. This is the dispersion relation for the scatterer

filled medium. The real part of K relates to the phase velocity while the

imaginary part relates to coherent attenuation in the medium.

3,. NUMERICAL COMPUTATIONS

In the low concentration limit, c - 0, it is well known that the single

scattering approximation (SSA) is valid so that lm(K/k) is given by

Im(K/k) = Qext (20)
ka

where Qext is the normalized (with respect to a-) extinction cross section

of a sphere of radius 'a'. An important problem is propagation in a rain

medium where the single scattering approximation has been widely used. Indeed,

even under very heavy rain, the concentration rarely exceeds 0.01 and is

typically around 10- 4 . We have compared our theory using WSA with Equation

(20) for a distribution of spherical water drops of radius 0.1 cm with ka in

the range 0.1 < ka < 3. The refractive index, which is a function of frequency,

is taken from Ray [19721. In Figure (3), we show the attenuation constant -y
S1 -3

defined as 4-r Im(K)/Re(K) as a function of ka using the IVSA for c = 10 -, 10

and 10-4 which is to be compared with Figure (4) which uses SSA. We note that

S. , .



both solutions yield nearly identical results. In Figure (5), we show

computation of y vs concentration for different ka values using the WSA.

Again the SSA is seemed to be excellent for the rain medium.

We now present computations for a random medium model used by Ishimaru

[1981] for the optical propagation experiments. The scatterers are latex

spheres of diameter 0.107W immersed in water with incident wavelength

X = 0.6p. In the Rayleigh limit, Twersky [1978b] has given an expression for

Im(K/k) by considering the leading effects of the pair-correlation:

Im(K/k) = c(ka)3 3- r J W (21)

where E is the relative dielectric constant and W is the packing factor= r

given by

(W-c) I + 24c x [g(x)-lJ dx . (22)

(1+2c) o

In Figure (6), we show Im(K/k) as a function of concentration c using Equation (22)

and the present theory employing the WSA, the P-YA and the Matern model. The

Matern [1960] model is completely analytic and is valid for c < 0.12S. We note

that Equation (22) and the P-YA are identical while both the Matern model and

the WSA fail for cz; 0.04, and in fact they give unphysical results for

c > 0.125.

In Figure (7), we show the comparison between the computation and the

two measured values at c = 0.01 and 0.10 given by Ishimaru [1981]. We note

that the ka value is 0.56 and that multiple scattering effects are seemed to

be important even at c = 0.01. The measured values at c = 0.01 and 0.1 are in
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very good agreement with both the NSA and P-YA while the SSA consistently

overestimates the effective coherent attenuation. Also, for c > 0.10 where

measurements are not available at the present time, we feel that only the

P-YA predicts the correct behavior of Im(K/k). In Figure (8), we show the

variation of Im(K/k) with ka for c = 0.21 and compare the results using the

SSA, the WSA and the P-YA. Va.ues for the WSA for ka < 0.75 are not shown

since the solution fails [Im(K/k) < 0] in this region. However, as ka

increases it appears that the WSA tends to merge with P-YA for ka > 3.0.

The SSA on the other hand predicts a higher attenuation than either the WSA

or the P-Ya.

-

r,
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measurements are not available at the present time, we feel that only the

P-YA predicts the correct behavior of Im(K/k). In Figure (8), we show the

variation of lm(K/k) with ka for c z 0.21 and compare the results using the

SSA, the WSA and the P-YA. Values for the WSA for ka < 0.7S are not shown

since the solution fails [lm(K/k) < 0] in this region. However, as ka

increases it appears that the WSA tends to merge with P-YA for ka > 3.0.

The SSA on the other hand predicts a higher attenuation than either the WSA

or the P-Ya.

ik



13

ACKNOW LEDGMENTS

This research was supported in part by NOAA under Grant No: 04-78-BOI-21,

NRL (USRD) contract No: N00014-80-C-0483, NRL (Washington) Contract

No: N00014-80-C-0835 and NSF Grant No: 8003376. Many helpful discussions

with Professor T.A. Seliga, Atmospheric Sciences Program, OSU are gratefully

acknowledged. The help of Mr. Haldun Direskeneli with the computations is

gratefully acknowledged.

-- ~ .---- - -



14

REFERENCES

Bostrom, A. (1980), Multiple scattering of elastic waves by bounded obstacles,

J. Acoust. Soc...m., 67, 399-413

Bringi, V.N., T.A. Seliga, V.K. Varadan, and V.V. Varadan (1981), Bulk

propagation characteristics of discrete random media, in Multiple

Scattering of Waves in Random Media, edited by P.L. Chow, W.E. Kohler

and G. Papanicolaou, 43-75, North-Holland Publishing Company, Amsterdam

Fikioris, J.G., and P.C. Waterman (1964), Multiple scattering of waves I.

Hole corrections in the scalar case, J. Math. Phvs., 5. 11.3-1420

Lax, M. (1952), Multiple scattering of waves II. Effective field in dense

systems, Phys. Rev., 85, 621-629

Matern, B. (1960), Meddn St. Skagsfork Inst. 49, S-7,

Percus, J.K., and Yevick, G.J. (1958), Analysis of classical statistical

mechanics by means of collective coordinates, Phys. Rev., 110, 1-13

Talbot, D.R.S., and J.R. Willis (1980), The effective sink strength of a

random array of voids in irradiated material, Proc. Roy. Soc. Lond., A,

370, 351-374

Twersky, V. (1978a),coherent electromagnetic waves in pair-correlated random

distribution of aligned scatterers, J. Math. Phys.,19, 215-230

Twersky, V. (1978b), Multiple scattering of waves by periodic and random

distributions, in Electromagnetic Scattering, edited by P.L.E. Uslenghi,

221-2SI, Academic Press, New York

Ray, P.S. (1972), Broadband complex refractive indices of ice and hater,

App. Optics, 11, 1836-1844

'iA



is

Varadan, V.K., V.N. Bringi and V.V. Varadan (1979), Coherent electromagnetic

wave propagation through randomly distributed dielectric scatterers,

Phys. Rev. D., 19, 2480-2489

Varadan, V.V., V.N. Bringi and V.K. Varadan (1981), Frequency dependent

dielectric constants of discrete random media, The Ohio State University

Research Foundation Report, 761261/711400, Columbus, Ohio

Waterman, P.C. (1971), Symmetry, unitarity and geometry in electromagnetic

scattering, Phys. Rev. D., 3, 825-839

Wertheim, M.S. (1963), Exact solution of the Percus-Yevick integral equation

for hard spheres, Phvs. Rev. Lett., 10, 321-323

.1



O16

Figure 1. Gem jr f randomlyv distributed andi alig'ned scattert- rs



2.2 17

2.0

C
0.26

1.8 '- -- 0.209

0.157

.Ij~ 0.01
1.6 i_ _

0.052

1.4

1.0 %

0.8

0.6

1-Q 1.5 2.0 2.5 3.0 3.5 4.0

x
Figure 2. The Percus-Yev'ick pair correlation function for hard spheres



100

WSA

a= o.l cm

10

C

10I7

10

100

0 1.0 2.0 3.0
ka

Figure 3. The coherent attenuation constant y vs ka for E: r r0
using the WSA



19

10 0 I

SSA
0=0.1 Cm

10-I

-62

l00

0 1.0 2.0 3.0
ka

Figure 4. The coherent attenuation constant y vs ka for E E r M
using SSA



20

i k =0.91

0.51
10' 0 0.1Cm 2 .01

3.01

0.16

2

10

16 16

O-3

io-4  aio-3 i -

[C

Figure 5. The normalized attenuation constant " vs concentration c for
different values of ka using the WSA

.1J

a ,~-. -- -



21

io- 6

LATEX SPHERES IN WATER

k a =O-05

PRESENT THEORY WITH P-YA

Im (K/k)

I

MATERN I WSA

I0I

0 0.1 0.2 0.3

C

Figure 6. The coherent attenuation lm(K/k) vs concentration c at
ka = 0.05 For latex spheres in water



22

ICf3  - - O-

1m(K/k)

LATEX SPHERES IN WATER

ka =0.56

- - SINGLE SCATTERING

- P-YA

-* -WSA

- MATERN

* ISHIMARU (expt.)

1051
0 0.1 0.2

C

Figure 7. The coherent attenuation lm(K/k) vs concentr~ition a t k
for latex spheres in hYater using different model,; f p~ir,
correlation fuTIctions



23

~1

0, 0~ 0,
A P0

0

~10 I
o 1%

0

-~ II
0

0

~- N) n

-~ -I
0 ~ocn m

(I) -< Z
> > C) ci)

i -U
P1

ri-i
(I) TI

Cj.J C) P1

a ~
(.0

rn
A =

-I
C)

:1,

A
0

A

-~ ~----.~ 'I.



COHERENT WAVE ATTENUATION AND FREQUENCY DEPENDENT

PROPERTIES OF ABSORBING MATERIALS

by

Vijay K. Varadan and Vasundara V. Varadan
Wave Propagation Group

Department of Engineering Mechanics
The Ohio State University, Columbus, Ohio 43210

September 1981

-A



I

Abstract

A scattering matrix theory is presented for studying the multiple

scattering of both longitudinal and transverse elastic waves in a medium

containing a random distribution of inclusions or voids of arbitrary.' shaoe.

A statistical analysis with QCA and Percus-Yevick pair correlation function

isthen employed to obtain expressions for the averag;e amplitudes of the

coherent fields which may be solved to yield the bulk or effecti'e propertles

of the inhomogeneous medium. Suggestions for incorporating CPA in conjunction

with QCA so that materials with dense concentration of inclusions can be

considered are also given.
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Introduction

In recent years, considerable effort has betn devoted to promoting

the development of elastomeric absorbing materials, containing a

distribution of cavities and inclusions, which are bonded to submerged

structures to control the sound radiated by these structures as well as

to modify their acoustic reflection characteristics (echo reduction). To

use such absorbing layers, it is important to determine how their physical

properties such as density, thickness and effective elastic moduli, and

material compositior such as distribution and orientation of the lnclusir.-

and their size distributions affect the acoustical behavior of anl actual

sturcture coated with that material.

The waves incident on such inhomogenoous media undergo multivlt

scattering due to the presence of inclusions thus reducing the scatte'-ng

amplitude or cross section by absorption and attenuation of waves. Fhe

attenuation depends critically on the material properties of the host

medium (matrix) and inclusions, the distribution of the inclusions sri the

frequency of the incident .ave. The problem is very difficult and -:, our

knowledge, rigorous theories with numericail results are nct a,.ailahle in

the literature.

In multiple scattering theor.es, approximations are usually made at

a very early stage for a) the geometry of the inclusic:,, b) the si:e of

the inclusion relative to the wa~elength of incident wave, and c

distribution of the inclu;ion-, in the matcr-x medir. The app ro\ itt ion

with respect to geoi-,etry and size are relar..,d. If the lncli>ion is 5:511

compared to the incident iavelergth, it not Luss h Ie co "see ex;ct

aB



details of the inclusion and usually one is content to obtain the gross

scattering properties of the inhomogeneous medium. This is the so-called

Rayleigh or low frequency limit, and yields corrections to the solution

for point scatterers. As far as the distribution of the inclusions is

concerned, one either has regular arrays of inclusions or a random

distribution. In the former case, one performs a lattice sum while in

the latter case, one employs a configurational averaging procedure. If

the concentration of inclusions is small, i.e., the inclusions are sparsely

distributed, we may use a single scattering or first Born approximation.

Approximations have been employed by many authors and the correspondn'

effective properties of the medium were studied at the low frequencies and

low concentrations, see for example, Waterman and Truell [1], Merkulova [2],

Chaban [3,4], Chatterjee and Mal [5], Domany, Gubernatis and Krumhansl [6],

Korringa [7], Kroner [8], Datta [9] and the references therein. Actually

the real problem warrants a rigorous multiple scattering theory and a

computational approach to study the frequency dependent properties of the

inhomogeneous media which will be valid for frequencies comparable to

scatterer size and for a wide range of concentrations, shapes and sizes.

Recently, the present investigators have developed a multiple scattering

formalism by introducing the concept of a T-matrix for individual inclusions

that makes the formulation more general and applicable to a variety of

different scatterers, see Refs. [10-20]. The method also lends inself to

numerical computations for higher frequencies of the incident plane wave as

well as more realistic geometries for the inhomogeneities. The dynamic

elastic properties of composite elastic media have been studied in [O]

using this formulation, and the concept of an average frequency dependeCt

7A
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elastic stiffness tensor following the work of Bedeaux and Mazur [211,

and Varadan and Vezetti [22]. The results seem to be promising for future

research in this area. In Ref. [201, we have shown that a Clausius-Mosotti

type formula for the average shear modulus can be recovered in the low

frequency limit. For higher frequencies, we have obtained the dynamic

properties for a range of frequencies. The extension of the theory

presented in [201 to acoustic and elastic wave scattering ,ill be useful

for Naval applications.

The present state of the art is as follows: the statistical considerations

seem to be the most difficult for three dimensional inclusions and the least

amount of progress has been made in this area. All formalisms that involve

ensemble averaging result in a heirarchy of equations for the average fields

that involve higher and higher order correlation functions. This heirarchy

must be truncated in some fashion. Foldy [23] approximated the field incident

on a scatterer by the average field itself. Lax [24] was the first to use

a quasi-crystalline approximation which involves the two particle correlation

function. At the moment, only the 'hole correction' has been taken into

account in a systematic way. Bose and Mal [25] have tried correlation

functions that fall off exponentially with distance. Recently, Twersky [1>)

has used the scaled particle equation cf state of a gas of hard spheres to

obtain improvements to the hole correction integral. The T-matrix formalism

employs Lax's quasicrystalline approximation [QCA), the hole correction

integral and results in a set of equations that must be solved in a self-

consistant manner.

In this paper, a radially smmetric pair-correlation unctiLon ci,.n h

Percus-Yevick (P-YA) integral equation [2 is introduced which i vo

S.. ..... 
.. .



imorovements to the hole correction integral. The "'ell-stirred" approximation

IWSA) was used previously by us which assumes no correlation between the

scatterers except that they should not interpenetrate. The iSA seems to

depend on concentration and frequency. At low frequency or Rayleigh limit,

WSA gives good results up to concentration, c < 0.04 and unphysical results

for c , 0.125 [23], However, at higher frequencies and higher concentration,

the WS.\ with quasi-crystalline approximation iQCA. yields better results.

At resonance frequencies we note that P-YA is so far the appropriate

correlation function to be employed [29-31].

Formulation of the Problem

Co'nsider N identical, finite elastic inclusions that are randomly

distributed in a different elastic medium, see Fig. 1. The scatterers are

homogeneous with elastic properties given by Lame's constants \ and and

density Q Io The properties of the outside medium (call matrix) are given

by \, u and o. in Fig. 1, 0. and 0. refer to the center of the i-th and i-th
i 3

scatterers, respectively and they are referred to the origin 0 by the

spherical polar coordinates (ri , ei i). P is any point in the medium

outside the scatterers (the matrix medium).

A time harmonic plane wave of unit amplitude and frequency , is

incident on the medium such that the direction of propagation of the incident

waves is along the :-axis, which may be written in terms of displacemnt

field vector u:

;(k Z- t)xa~ =e' P + e's



where k and k are the compressional and shear wave numbers given byp s

p p (2)

ks (3)

and t is the time. The waves incident to the discrete random media will

undergo multiple scattering. Let ui (r) be the field scattered by the i-th

scatterer. The incident and scattered fields satisfy the vector Helmholt:

equation. The problem at hand reduces to computing the total wave field

at any point in the matrix medium and hence the bulk properties, satisfying

the appropriate boundary condition on the surface of the scatterers and

radiation conditions at infinity.

The total field at any point in the matrix medium can be interpreted

as the sum of the incident field and the fields scattered by all the scatterers,

which can be written as

-r) o -, N s i ----
u(r) (r) + u.(Pi  P #i = r-r. (4)

i1l

-0
However, the field that excites the i-th scatterer is the incident field u

plus the fields scattered from all other scatterers except the i-th. The ter:

exciting field u is used to distinguish between the field actuatllv incident

-0
on a scatterer and the external incident field a prodiced by a source at

infinity. Thus, at a point r in the vicinity of the i-th scatterer, we write

N
uCr) -u r) (ur(2) a :<2a

,,fl, .. .. . ....- --

. . . . I I I I I I I i - " .. . .. . .. .- i ra . . .. . . . . . .. . ..,
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where 'a' is a typical dimension of the scatterer.

The exciting and scattered fields for each scatterer can be expanded

in terms of vector spherical functions with respect to an origin at the

center of that scatterer:

2 2

. - b
i  

( -bi -;
-e - e 7 r, e 6

uerl= b Re b Re 6

r=1 : n=O :c1 .n

. ) = B' , ' (7)
- Tn'nn

where n = 1,2,3) are the vector spherical vector basis functions (19].

Field quantities that are regular at the origin are expanded in terms of the

regular (Re) basis set (Re $j) obtained by replacing the Hankel function

of the first kind, h n , in the above equations by the spherical Bessel functicns

J of the first kind. In Eq. (7), we abbreviate these vector basis funct-ions
n

as n= ' n"We note that - 1n is for the longitudinal part while

,d for the transverse parts. The choice of the basis set in Eq. (7)
3n

satisfies the radiation condition at infinity for the scattered field,

while the choice in Eq. (6) satisfies the regular behavior of the exciting

field in the region a < 1oi, < 2a. The superscript i on the basis functions

refer to expansions with respect to Oi , and b
i  and Bi are the unknown
Tn 'n

exciting and scattered field coefficients. We also expand the incident

field in terms of vector spherical functions:

I'
tA

- - ..t , -. /



k ('s + 1) is  Ret,

p s=O t=-s

2i e p 1 2 s
s=l =- +1) ' R

+ Re s t 1 -s(s+1) (8)
s ts [ tI

where 5 mn is the Kronecker 6. For the sake of simplicity, we write the

incident wave field in terms of expansion co-efficients a as follows

UO_ a Re~p e i k Tr.i

n

where a are the known incident field coefficients.
Ln

The unknown coefficients b i can be related to B by means of any
Tfn Tn

convenient scattering operator, in this case we employ the T-matrix, see

Ref. [321.

Bi  T i  bi
C03= T ' nb .(10)

in 'n Tn,Tm t n

Substituting Eqs. (6), (7) and (8) in (S), we obtain

i:.r . N
b' Re ' = e Re V + Bj  (1)
in Tn in in Cri

7n -.n j i tn
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Since the field quantities are expanded with respect to centers of each

scatterer, we obtain Eq. (9) with basis functions with respect to i-th

and j-th centers. In order to express them with respect to a common

origin 0., we employ the translation and addition theorems for the vector1

spherical functions [331 which may be written in a compact form as follows:

S(ri-rj Re n (12)

Employing Eq. (12) in (11) and using the orthogonality of the vector

spherical basis functions, we obtain the following set of coupled algebraic

equations for the exciting field coefficients b
1

Tn

i kr N
b =a e r + B, I G (13)
In tn j~i 'n n cn ,-n i

With the scattered field coefficients Bi expressed in terms of excitingTn

field coefficients bi and the T-matrix as given by (10), Eq. (13) gives
In

the exciting field formulation of the multiple scattering. If we multiply

both sides of Eq. (13) by the T-matrix, then we obtain the scattered field

formulation of multiple scattering which may be written as

Bi a 8Z(i) T i T(ik r)In In T nt in" an exp(i

N

L ' ' i'n' 'n' ,r'in" (r 1j

1.i

'" Il ! IIIII
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From Eq. (14), it can be seen that the scattered field coefficients

of the i-th scatterer explicitly depend on the position and orientation

of other scatterers. In this paper, we consider a random distribution

of spherical scatterers and the ,'ase when N - and the volume occupied

by the scatterers V - - such that N/V = n0 is a finite number density.

For such distribution, a configurational average of Eq. (14) can be

made over the positions of all scatterers [29-321 with QCA [24] to arrive

at an equation for the configurational average <Bi >. of the scattered
Tn i

field coefficients with one scatterer fixed:

F i k r.

<BI > = T n a~ e T I
Tn 1 t"n" in, nn"
<B > =)T Ine

+ (N-l) Z f pJV i)<B d7 (is)' n n j -, n ' T n " I
In V

where p(ri.) is the two particle joint probability density.

The joint probability density is defined as

g(lrj-ril) ; I-j-P i  2a
p(Pjf* i) =

0 ; j r i  > 2a

J1

Equation (16) implies that the particles are hard (no-interpenetration) and

the excluded volume is a sphere of radius 'a' although the particles

themselves may he non-spherical. The function g(Irj-ri. ) is

called the pair correlation function and depends only on r-r. dUte t )
*1 I

-, .. '-, --.----- .. ai
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translational invariance of the system under consideration. The pair

correlation function for an ensemble of particles depends on tl., nature

and range of the interparticle forces. The average of several measurements

of a statistical variable that characterizes an ersemble will depend on

the pair correlation function. To obtain expressions for the pair

correlation function, one needs a description of the interparticle forces.

In our case we assume that the scatterers behave like effective hard

spheres (where the radius 'a' is that of the sphere circumscribing the

scatterer). Percus and Yevick [27] have obtained an approximate integral

equation for the pair correlation function of a classical fluid in

equilibrium. Wertheim [341 has obtained a series solution of the integral

equation for an ensemble of hard spheres. The statistics of the fluid

are then same as those of the ensemble of discrete hard particles that

we are considering.

Although integral expressions for the correlation functions also

result in a heirarchy, Percus and Yevick have truncated the heirarchy by

making certain approximations that result in a self-consistent relation

between the pair correlation function g(x) and the direct correlation

function C(x). The direct correlation function may be interpreted as

the correlation function resulting from an 'external potential' that

produces a simultaneous density fluctuation at a point and the external

potential is taken to be the potential seen by a particle given that

there is a particle fixed at another site. Fisher [35] comments that

the Percus-Yevick approximation is a strong statement of the extremely

short range nature of the direct correlation function. The integral

equation has the form
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T(X) = 1 n f T(x')dx' - n 0 t(x')T(x-x')dx' (17)

x<2a 0 x' <2a
lx-x' l>2a

where

T (x) =g(x) ;x>2a

g(x) = 0 ; x < 2a
(I8)

T(x) = -C(x) ;x < 2a

C(x) = 0 ; x > 2a

Wertheim (34] has solved the integral equation by Laplace transformation

that results in an analytic expression for C(x) in the form

C(x) = -(-n) - 4 [(l*2n) 2 
- 6n(l+In 2x  2 3C~) -l-~) fl+nY- n~+ n )x +n(l 2n) xa/21 ; n =c/8 (19)

where 'c' is the effective spherical concentration of the particles. The

Percus-Yevick approximation fails as the concentration approaches the

close packing factor for spheres and is expected to be good for c < 0.3 or

0.4.

Equation (19) can be substituted back into Eq. (17) to yield a

series solution for g(x) in the form [34]

g(x) = I gn )  
(2

n=l

where

(X) 1 t(x-n) S(t 3n

n J4nxi e [L(t) St tdt

S. -.. .. a m m - -i" - -
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where

S(t) = (1-n-)t 6n(1-n) + sn-t-12n)(l-2n) (22)

and

L(t) = 12n [l+n2)t + (+2n)] (23)

Throop and Bearman [36] have tabulated g(x) as a function of x for values

of n = c/8. A few representative plots of the pair correlation function

are shown in Fig. 2.

To solve the integral equations given by (15), we consider the

inhomogeneous medium with discrete scatterers as a homogeneous continuum

and assume that the average coherent wave is a plane wave propagating

with an effective wave number K in the same direction as the incident

plane wave. We can thus write

ii .r

<B > = X e ,24)
in in

where X is the amplitude of the coherent wave.

Substituting Eq. (24) in (15) employing the joint probability function

as defined before and the divergence theorem to convert the volume

integral in (IS) to surface integrals and using the extinction theorem

which cancels the incident wave, we obtain a set of simultaneous coupled

homogeneous equations for the coefficients X given by
in

Tn c n n XTn " Cint n""n" ~ n' = n'n" 'n':"n"!k- -:-a" ,5

I.



12

3
where c = 47 a n /3 is the effective spherical concentration of the

scatterers per unit volume, Cq is an expression containing Wigner

coefficients, and

6c
I (Kk 'c) = [ [2k a j (2Ka) h'(2k a)
q T (k Ta)--(Ka)- T q '4 T

T)

-2Ka h (2k a) j (2Ka)] 24c f x2[g(x)-l] h (k x) j (Kx) dx [26)
q -q x=l q q

At low values of concentration c, g(x) = 1, see Fig. 2, and hence the

integral in Eq. (26) is negligible which results in a system of uncorrelated

hard particle statistics. This is what has been referred to as the 'well

stirred approximation' (WSA) and yields the 'hole correction integral' as

outlined by Fikioris and Waterman [37] and by us earlier. If g(x) > I,

one can regard the Eq. (26) as a modified 'hole correction integral' which

is of the same form used by Twersky [26].

Equation (25) is a system of simultaneous linear homogeneous equations

for the unknown amplitudes X . For nontrivial solution, we require thatTn

the determinant of the truncated coefficient matrix vanishes, which yields

an equation for the effective wave number K in terms of k and the T-matrix

of the scatterer. This is the dispersion relation for the scatterer

filled medium. Equation (25) is a general expression valid for any

arbitrary shaped scatterer, since the T-matrix is the only factor that

contains information about the exact shape and boundary conditions at the

scatterer. Thus the formalism presented here is valid for all the three

wave fields. The effective wave number K obtained in the analvsis is a

A.
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complex quantity, the real part of which relates to the phase velocity,

while the imaginary part relates to attenuation of coherent waves in the

medium.

Results and Conclusions

In the Rayleigh or low frequency limit, the size of the scatterers

is considered to be small when compared to the incident wavelength. It

is then sufficient to take only the lowest order coefficient in the

expansion of the fields. In this limit, the elements of the T-matrix can

be obtained in closed form for various simple shapes (46). It can be

shown that at low frequencies, only X '( and X f Eq. (25)

make a contribution. \'ter some manipulations of the resulting

3 x 3 determinant, we obtain the following dispersion relations for

elastic spherical inclusions embedded in a different elastic medium

(matrix):

E) 3k- ]

K-S E2  1k3 E0 *- _2
K (1+9c E l) (1+3c E 2 L 3c 2

1-25 z 2 [l- -0 [- - - 2 2 1~7 (27)

k 9kk -''

k "/

)2 (1+9c E )l(+ 
F E 2+

(K)+ c EL:,(4-

p
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where

E 3 X+2w(3 \ Ok I+2.
0 3 4vi+3X 1+ 2,11

(29)

P P) 24 i N 1 ji) - (A+2i 1  (l9u, 1 6u)
E, ~ = ~ - -

2P1 N1-W (YX1 2I) (19LJ 1l6w)

I
x -P + 3(X+24) 2 +w

and c =4?Ta n /13 is the concentration of spheres, and K Pand K Sare the

coherent wave numbers for longitudinal and shear waves, respect ively, in

the new medium. Similar expressions can also be derived for spheroidal

inclusions using the T-matrix obtained in Refs. [32,38]. In the Rayleigh

limit, the value of K as determined by the above dispersion relations is

a real quantity for lossless (elastic) material and a complex quantity for

loss>' (viscoelastic) material, and relates to phase velocity V p= K

In this limit, we normally study the dependence of phase velocity on

concentration, angle of incidence and aspect ratio of' scarterers. The

teneral tendency of the phase velocity is to in. .1s 4htly (tor

inclusion) and decrease slightly (for cracks and cavities) as concentrition

increases. Thus, the phase velocity vs. concentration informai~tion i,; not

very useful both from theoretical and experinent-il point of vi h 1
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plots of absorption and coherent attenuation due to multiple scattering

vs. frequency for various concentrations carry more information which may

eventually be used for designing absorbing materials [39].

The dispersion relations given in Eqs. (27) and (2S) may also be

useful in obtaining the effective shear modulus and bulk modulus at low

frequencies. Following the work by us [20,22] and by Bedeaux and lazur "-l],

we arrive at the following shear and bulk moduli (<u> and <B>) of an elastic

material containing a random distribution of stress free bubblea or

cavities

4p-3c E, (9X+14w)

= (30)
4p+6c E2 (35+8u)

<B> 3X+2, [1-6c E0 ] (31)
B (3X+2u) [1+3c E 0]

where E0 and E, are defined in Eq. (29).

To study the response at resonant and higher frequencies, we must

consider higher powers of k a, and this imolies that a larger number of

terms (X n must be kept in the expansion of the average field. This is

best done numerically. For a given value of ka, the T-matrix for the

scatterer is computed. Next, the coefficient matrix NI corresponding

to X (Eq. (25) is formed. The complex determinant of the
:n

coefficient matrix is computed using standard Gauss elimination techniques.

For a given k a, the root of the equation det M = 0 is searched in the

complex K plane (K1 + iK,) using Muller's method. Good initial guci;ses

were provided by the Rayleigh limit solutions at low values of k a and

Tp



these could be used systematically to obtain convergence of roots at

increasingly higher values of k a. The real part K determines the phase

velocity, while the imaginary part K, determines the coherent wave

attenuation.

Here, we present some sample numerical calculation of spherical

glass inclusion in epoxy matrix. The longitudinal and shear ,ave

velocities of the glass and epoxy matrix are taken as (Cp 1 = 5.28 mm/asec,

cp = 2.S4 mm/visec, (cs)l = 3.24 mm/ isec and c s= 1.16 rm.,!sec, respectively.

We consider a concentration of 44.1% to reflect a high concentration. The

coherent wave attenuation vs. frequency (longitudinal wave number) for

this configuration is shown in Fig. 3. The general tendency of attenuation

is to increase at lower frequencies and shows some oscillation as shown.

These results are compared with some experimental observations for the

same composite obtained by Kinra (private conunication). The theoretical

results obtained in this paper compare with Kinra's experimental results

qualitatively not quantitatively. The reason for this factor difference

must be explored in the future. The oscillation at higher frequencies,

however, indicate that the scattering is mostly in the forward direction.

Thus, in this case repeated scattering should not be important, since

the backscattered wave is significantly smaller than the forward scattered

wave. The same observation may be noticed even for electromagnetic waves

[28] where the theoretical results obtained by our theory are compared

with experimental data. (The paper [28] is enclosed for the benefit of

the reader.

Since the phase velocity does vary very slightly as a functint

frequency, the bulk properties depend totally on coherent wa've ittenlt

A
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only. Thus, one can compute the bulk properties which can be plotted

in the complex plane (Cole-Cole plot as shown in our paper [3C] which

is also enclosed.

Recommendations for Future work

It is obvious from the preceding discussions on the QCA as well as

the numerical results that the two ma4or improvements required are for

the QCA as well as the pair correlation function, so that good results

can be obtained for all concentrations even at long and intermediate

values of the wavelength. In a review article, Lax [40] has suggested

that in the quantum mechanical context, the QCA could be improved by

using modified propagators for the fields. In the classical context,

this implies that on the average, single particle scattering takes place

in a macroscopically homogeneous medium, and, in this respect, this idea

is the same as the coherent potential approximation (CPA) of Solid State

Physics. The repeated multiple scattering betieen pairs or scatterers

or cluster effects can be improved by making the self consistent

approximation (SCA) in addition to the CPA.

For the purpose of discussion of these ideas within the T-matrix

formalism given earlier, we denote by u. and u. the fields scattered by

and exciting the j-th scatterer, respectively. The expansion coefficients

of these fields are denoted by Bi and b), respectively, omitting all

subscripts.

The CPA can be expressed succinctly as

B JK

__
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where the T-matrix relating the exciting and scattered field coefficients

is evaluated using the bulk propagation constant K for the embedding

medi um. Thus the CPA imnlies that the field scattered b- a single

obstacle in the presence of several others when averaged over the position

of all scatterers is the same as the field that would be produced b. a

single particle embedded in a macroscopicall'i homogeneous medium described

by the propagation constant K. The incorporation of the CPA into the

previous formalism involves changes only in the computations and a

redefinition of the T-matrix in Eq. (10). It would be interesting to see

the change, if any, in the numerical computations as a result of invoking

the CPA.

The idea behind the 'self consistent approximation' (SCA) is somewhat

more suble. From the discussion in the section on the QCA, it is now clear

that QCA-CPA neglects multiple scattering between two fixed scatterers.

The SCA as defined by Schwartz and Ehrenreich [41] restores this by

stating that

<B . = T(K) <b)>. L3-

where T(K) is the T-matrix of scatterer 'j' in the presence of scatterer

'i' in the effective meditm with propagation constant K. Expressions tor

T(K) as given by Varadan and Varadan [42] may be written as

-~ -1
T,( = Rir. /2) T[l-:(-r .T, (r. )T

I - -r )TR(r.i.j R t-r J2)
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where r is a compact notation for the translation matrices B and C

introduced in Eq. (12). The R matrix is simply the part of o that is

regular at the origin, i.e., for r.i = n. All matrices in Eq. '34)

arc obtained using the bulk Propagation Constant for the host medium.

We observe that T(K) explicitly depends on r. the distance between

'i' and 'j'. The integration procedure will no longer be simple as

before and the SCA may be rather difficult to enforce in computations,

especially if more realistic models are chosen for the pair correlation

function.

Incc-poration of the CPA as well as improved models of the pair

correlation function into our computations are in progress. Ke hope that

they will shed some light on the sensitivity of multiple scattering

theories to approximations like QCA and SCA as a function of frequency

and scatterer concentration. Needless to say additional experimental

results are required for comparison with these computations.



20

Acknowledgments

This work was supported in part by NRL (Washington) Contract

No: N00014-80-C-0835 and NRL (USRD) Contract No: N00014-80-C-0483.



21

References

1. P.C. Waterman and R. Truell, "Multiple Scattering of Waves," J. Math.
Phys., 2, 512 (1961).

2. V.M. Merkulova, "Acoustical Properties of Some Solid Hetrogeneous
Media at Ultrasonic Frequencies," Soy. Phys. Acoust., 11, 55 (1965).

3. l.A. Chaban, "Self-Consistent Field Approach to Calculation of the
Effective Parameters of Microinhomogeneous Media," Soy. Phys. Acoust.,
10, 298 (1964).

4. I.A. Chaban, "Calculation of the Effective Parameters of Micro-
inhomogeneous Media by the Self-Consistent Field Method," Soy. Phys.
Acoust., 11, 81 (1965).

S. A.K. Chatterjee and A.K. Mal, "Elastic Moduli of Two-Component
Systems," J. Geophys. Res., 83, 1785 (1978).

6. E. Domany, J.E. Gubernatis and J.A. Krumhansl, "The Elasticity of
Polycrystals and Rocks," Materials Science Center Report, Cornell
University, New York (1974).

7. J. Korringa, "Theory of Elastic Constants of Heterogeneous Media,"
J. Math. Phys., 4, 509 (1973).

8. E. Kroner, "Elastic Moduli of Perfectly Disordered Composite Materials,"
J. Mech. Phys. Solids, 15, 319 (1967).

9. S.K. Datta, "Scattering of a Random Distribution of Inclusions and
Effective Elastic Properties," in the Proceedings of Continuum Models
of Discrete Systems, University of Waterloo (1977).

10. V.K. Varadan, V.V. Varadan and Y.H. Pao, "Multiple Scattering of
Elastic Waves by Cylinders of Arbitrary Cross Section - I. SH-Waves,"
J. Acoust. Soc. America, 63, 1310 (1978).

11. V.K. Varadan and V.V. Varadan, "Frequency Dependence of Elastic (SH-)
Wave Velocity and Attenuation in Anisotropic Two Phase Media," Int. J.
Wave Motion, 1, 53 (1979).

12. V.K. Varadan, "Scattering of Elastic Waves by Randomly Distributed
and Oriented Scatterers," J. Acoust. Soc. America, 65, 635 (1979).

13. V.K. Varadan and V.V. Varadan, "Multiple Scattering of Elastic Waves
by Cylinders of Arbitrary Cross Section II -P and SV Waves," Materials
Science Center Report, #2937, Cornell University, New York (1977).



22

14. V.K. Varadan, "Dispersion of Longitudinal Shear Waves in a Medium
Containing Periodic Arrays of Cylinders of Arbitrary Cross Section,"
Proceedings of the 14th Annual Meeting of the Society of Engineering
Science, Lehigh University, Pennsylvania (1977).

IS. V.K. Varadan and V.V. Varadan, "Dynamic Elastic Properties of a
Medium Containing a Random Distribution of Obstacles - Scattering
Matrix Theory," Material Science Center Report #2740, Cornell
University, New York (1976).

16. V.K. Varadan, V.V. Varadan, V.N. Bringi and T.A. Seliga, "Acoustics,
Electromagnetic and Elastic Wave Fields," Proceedings of International
IEEE/AP-S Symposium USNC/URST Meeting, University of Colorado, Boulder,
Colorado (1978).

17. V.K. Varadan, V.N. Bringi and V.V. Varadan, "Coherent Electromagnetic
Wave Propagation Through Randomly Distributed Dielectric Scatterers,"
Phy. Rev. D., 19, 2480 (1979).

18. V.V. Varadan and V.K. Varadan, "Multiple Scattering of Electromagnetic
Waves by Randomly Distributed and Oriented Dielectric Scatterers,"
Phys. Rev. D., 21, 388 (1980).

19. V.K. Varadan, "Multiple Scattering of Acoustic, Electromagnetic and
Elastic Waves," in Acoustic, Electromagnetic and Elastic Wave Scattcrin -
Focus on the T-matrix Approach (Edited by V.K. Varadan and V.V. Varadan,
Pergamon Press, New York (1980).

20. V.K. Varadan and V.V. Varadan, "Characterization of Dynamic Shear
Modulus in Inhomogeneous Media Using Ultrasonic Waves," First
International Symposium on Ultrasonic Materials Characterization,
NBS, June (1978).

21. D. Bedeaux and P. Mazur, "On the Critical Behavior of the Dielectric
Constant for a Nonpolar Fluid," Physica, 67, 23 (1973).

22. V. Varatharajulu (V.V. Varadan) and D.J. Vezzetti, "Approach of the
Statistical Theory of Light Scattering to the Phenomenological Theory,"
J. Math. Phys., 17, 232 (1976).

23. L.L. Foldy, "The Multiple Scattering of Waves I. General Theory of
Isotropic Scattering by Randomly Distributed Scatterers," Phys. Rev.
67, 107 (194S).

24. M. Lax, "Multiple Scattering of Waves [[. Effective Field in Dense
Systems," Phys. Rev., 85, 621 (1952).

25. A.K. Mal and S.K. Bose, "Dynamic Elastic Moduli of a Suspension of
Imperfectly Bonded Spheres," Proc. Camb. Phil. Soc., 76, 587 (197",.

- .-



23

26. V. Twersky, "Coherent Electromagnetic Waves in Pair-Correlated Random
Distribution of Aligned Scatterers," J. Math. Phys., 19, 215 (1979).

27. J.K. Percus and G.J. Yevick," Analysis of Classical Statistical
Mechanics by Means of Collective Coordinates," Phys. Rev., 110,
1 (1958).

28. V.N. Bringi, T.A. Seliga, V.K. Varadan, V.V. Varadan, "Bulk
Propagation Characteristics of Discrete Random Media," in Multiple
Scattering and Waves in Random Media (Edited by P.L. Chow, W.E. Kohler
and G.C. Papanicolaou), North-Holland Publishing Company, Amsterdam,
43 (1981).

29. V.N. Bringi, V.V. Varadan and V.K. Varadan, "The Effects of Pair
Correlation Function on Coherent Wave Attenuation in Discrete Random
Media," IEEE Antennas and Propagation, in press.

30. V.V. Varadan, V.N. Bringi and V.K. Varadan, "Frequency Dependent
Dielectric Constants of Discrete Random Media," The Ohio State
University Research Foundation Report, 1981.

31. V.V. Varadan, V.N. Bringi, T.A. Seliga and V.K. Varadan, "Coherent
Wave Attenuation by a Random Distribution of Particles," J. Radio
Science, invited paper (to be published in 1982).

32. V.K. Varadan and V.V. Varadan (Eds.) Acoustic, Electromagnetic and
Elastic Wave Scattering - Focus on the T-matrix Approach, Pergamon
Press, New York (1980).

33. A. Bostrom, "Multiple Scattering of Elastic Waves by Bounded Obstacles,"
J. Acoust. Soc. Am., 67, 399 (1980).

34. M.S. Wertheim, "Exact Solution of the Percus-Yevick Integral
Equation for Hard Spheres," Phys. Rev. Lett., 10, 321 (1963).

35. I.Z. Fisher, Statistical Theory of Liquids, The University of Chicago
Press, Chicago, 309 (1965).

36. G.J. Throop and R.J. Bearman, "Numerical Solutions of the Percus-
Yevick Equation for the Hard-sphere potential," J. Chem. Phys. 42,
2408 (1965).

37. J.G. Fikioris and P.C. Waterman, "Multiple Scattering of Waves II.
Hole Corrections in the Scalar Case," J. Math. Phvs. 5, 1413 (19(,).

38. V.V. Varadan and V.K. Varadan, "Low Frequency Expressions for Acoustic
Wave Scattering Using Waterman's T-matrix Method," J. Acoust. Soc. Vm.
66, 586 (1979).



25

z

circumscribing
sphere

0 a

I I P

riy

x

Figure 1. Random distribution of inclusions of arbitrary shape



2.2 26

2.0

I C
I 0.26

1.8 ' 0.209I

1. . 0.157
'- - 0.01

1.6 
____ 0.052

1.4

I

1.2

'° I'

1-0.

- -

0.8

0.6

1.0 1.5 2.0 2.5 3.0 3.5 4.0

x

Figure 2. The Percus-Yevick pair correlation function for hard sphereL as

given by Throop and Berman (1964)

.1



27

1.6

C 0.441

1.2

Sd
0.8

0.4

0 3.0 6.0 9.0 12.0

kp a
Figure 3. The coherent attenuation S = 4 Im(K /k ) vs k a for glass spheres

in epoxy matrix d



FREQUENCY DEPENDENT OIELECTRIC CONSTANTS

OF DISCRETE RRXNOM MEDIA

V.V. ',aradan V.N. 3ringi and V.K. Varadan
4ave Propagation Group

3oyd Laboratory

The Ohio State University, Columbus, Ohio 43:10

Abstract

Numerical computations of the effec:ve dielectric constant of discrete random media

are presented as a function of frequency. Such media have a complex dielectric

constant giving rise to absorption of a propagating wave both due to geometric

dispersion or multiple scattering as well as absorption, if any, due to the

viscosity of the particles and the inatrix medium. We are concerned with the

absorption due to multiple scattering. The scattering characteristics of the

individual paricles are described by a transition or T-matrix. -he effects of two

models of the pair correlation function which arises in the multiple scattering

analysis areconsidered. We conclude that the well stirred approximation :WSA) s

good for sparse concentrations and/or high frequencies whereas the Percus-Yev.ck

approximation -P-YA) is preferred for higher concentrations.

:ntroduction

The study of the frequency dependence of the effective dielectric constant of

statistically inhomogeneous media is important for practical applications such as

geoonysical exploration, artificial dielectrics etc. In such dielectrics a

propagating electromagnetic wave undergoes dispersion and absorption. Some

materials are naturally absorptive due to viscosity whereas inhomogeneous =edia

exhibit absorption due to geometric dispersion or multiple scattering.

In this paper the effective, complex frequency dependent dielectric zonstant of a

discrete random medium containing a distribution of aligned spheroidal dielectric

scatterers in free space is calculated for different zoncentrations of the scarterers

as 4ell as for different material properties of the scatterers. ee use a iultiple

scattering formalism analogous to that used by Twersky
I 

but use the :oncept of 4

transition matrix or T-matrix to characterize the scattering from a single obstacle.

Ail details of the geometry ano material properties of the scatterer are contained

in the T-matrix leaving the 3eneril formalism Lndependent of the type of scatterer.

Spherical statistics are used even though the scatterers nay 3e non-svher:cal. Lax's

quasi-crystalline approximation (QCA) is used to truncate the heirarcnv of • uatlons

that result when an ensemble average is performed on the multiply scattered field.

JA



The resulting equations for :he average fteld require a knowledge if the pair

correlation function of :he dielectric scatterers. In orevious ,orks
'4
1
5 , 

we assumed

that the particles did not penetrate each other but were otherwise ancorrelatea.

Willis' has called this the well stirred approximation WSA). However, the 4SA Lead

to unpnysical results for the absorption coefficient of the average medium for

scatterer concentrations z > 0.1S. In many artificial dielectrics, the scatterer

concentration is often greater than J.lS. In this oaver, 4e have also considered

tne Percus-Yevick approximation 1,P-YA) to the pair correlation function. WefThetm

has provided a semi-analytical solution of the resulting integral equation for a

system of hard spheres. Throop and Searman
9 

have provided tabulated values of the

pair correlation function for different values of the concentration as a function of

the inter particle distance. We have used these tabulated values in the numericzl

computations.

Calculations are presented for a system of polyethylene spheres and spnerolds as -ell

as ice particles for 0 <c 0.26 for several values of the non-dimensional

wavenumber ka - a ranging from 0 to S.0. ('a' is a characteristic dimension of the
C

scatterer). Two types of results are presented. :n the first instance the -,'aiditv

of the WSA and P-YA and their effect on the absorption coefficient is studied as a

function of concentration and frequency. Secondly, the complex plane locus of the

effective dielectric constant is piotted for the systems considered. For artific:a

dielectrics the locus deviates dramatically from the circular arc locus comonly

notaced for ordinary solids and liquids that exhibit absorption due to viscosity.

Oave propagation in a discrete random medium

Consider Nl identical rotationally symmetric dielectric scatterers chat are ailgneo

but distributed randomly in free space r.see Fig. 1I. Let 0 be the orgxn of a

coordinate system located outside the scatterers whose centers are denoted -v

01, 0Z, 0 ... 0'. Monochromatic plane electromagnetic waves of frequency j propagare

along the symmetry axis of the scatterers which is taken to be the :-axis. Since

the medium is isotropic about the :-axis there are no depoiari:ation effects. The

time dependence of the incident and hence the fields scattered by :me naivi-ua.

scatterers is all of the rorm exp(-iwc) and this is suppressed in tne eQuat-ons :nat

follow.

Let Eo"r) be the electr:c field arising from the incident ploe wave nde

field scattered by the i-th scatterer. The total field at a point outs'.e I_. t. e

N scatterers, denoted by Ekr) is ziven by

N

The field incident on or exc=tzng the -th scatterer is liven ov

- - ' . . . "" " . . . r,, ,, ,,, ,,' 
a

. .. .llI i~ i lr. . .. .



Figure 1. Scattering £eometry

N

~(r) ~() * E.r) ;a rr. a
I J

where 'a' is a typical dimension of the scatterer. From Eqs. (1I and (2 -e note

that

4e need an additional equation relating % and in order to make :.he fields

microscopically se f-,onsistent.

Vector spherical functions are used to expand the exciting and scattered ftelds

associated with each scatterer with respect to an origin at the center ot nat

scatterer. Thus

2
Ai Rs Wo a E;

and

2 e ).

-) F Ou zmc' :a
- L -0 :-l " ./



.ihere

anad the vector spnerical funct-ons are defined as

bu ~~ 7x fr? S. zr
) Re lzmj 

7
X kr

iOU - 3 u
Re k .X Re I"

In Eqs. () and (3) j and h, are the spherical Sessel and Haniel functions ana :he

Y , i, ) are the normais:ed svherical harmonics defined with real angular funct:ons.

To make the notation more compact we introouce a super index 'n' to represent

f:Zmai as follows

Ou - Ou-

Re 'M Re n

We observe that the coefficients of expansion A and F associated with the

exciting and scattered fields depend on the position of all N scatterers. Fur.her,

since Eq. 1-3) is satisfied, we can relate "he two sets of coefficients by means ot

10
the T-matrix as defined bv Waterman 

. 
We have

an

The T-matrix depends on the frequency of the wave exciting :he icatterer as .e~l as

its geometry and material properties.

If Eqs. '4), LS) and t9) are substituted in Eq. (:.), we would need the translat-on

adtion theorems for "he vector splierical functions in order that we may refer al-

expansions :n Eq. (2) to a common origin. In zompact form

S Cr) Re v, ; :

nn, . V

Cu 0n :3

R,(r.) Ou snfo) r..nn Iri :n'(3,)n

wisere r. i r-r is the vector connecting 0, to 0 and :n' is :he translation matri.:

for the vector -'unctions and Rnn, is the same as Inn' with the spher:cal Hankel

functions in 3,in, replaced by spherical Bessel funct:ons. Detailed express;ons for

the , atrices are given by Bostrom

The incident electric field V cn be expanded with respect to an or-gr. at as

gr* e ek: - a Re



4nere the coefficients a are known see for example 4orse anu Fesncacn
' . 

- e

ooserve that for a plane wave propagating 'n :ne :- irection zne oniv non-:ero .,aies

or an - atmc are a,,, and a ; 4c[!,- , all other coefficients -eing :ero.

Jsing Eqs. 14), S), 9)-(l, in Eq. 2,, using the orthogonaiizy of :ne 'ector

sonerical functions we otain

i ek:
' r. a

n 11 , n A ,,e a -A 'R 'n . 'a.n"
nn :*I n' .1'-

Equat:on : is a set of coupled aigeoraic equations for :he exciting fieia

zoefz.cients associated itn each scatterer. If the numoer - scat:erers N is

.-nice and tne position of all the scatterers is known, then Eo. -:, can De solvec

in principle. But we wish to consider the case -, V- such that N,V 2 n is a• ' 3
:inite number density. Since N is large, we are only interested in the confijurational

average of Eq. 12) over the -ositions of I particles

The coherent field

The average of Eq. '12? over the position of all scatterers :the average exciting

field) is the sane as the ensemble average, where the ensemble is composed of

cifferent possibie configurations of the scatterers. Equation 12, is averaged over

the oosition of all particles excevt the L-th. But the r:ht hand sioe of Eq. '1'

explicitlY depends on :he position of the *-th particle. hence we Must specify

the two particle joint probability density P,'r, r Further, we assume ttat a!L

scatterers are identical, so that

k'r- ,," P'r r.' Y
n n n n" '.:3'"'n :

4e note that the average exciting field with one scatterer held fixed is given on terns

of the average with two scatterers :eld fixed, leading to a neirarcny :.at reauores

knowledge of higher order probability densities. It has been customary to truncate

the heirarchy by invoking the 'quasi crystalline approximation' QCA; first

introauced by Lax According to this aporoximation

j~

Specifically the QCA neglects multiple scattering between pairs of scatterers.

Improvements to the QCA have been suggested by 7werskv' and in previocus or L- us

The )oint probability density is defined as

.7 --

Pr- r,-r. :a



EQuation r.3 iaolies that the nart-ttes ire tard no-internenetratonl and the

exc uded voiume is a spnere if radius '' a.tnougn the oarz ze; tnemselves a -e

non-sphericai. -he func::on g r.. -c : s ca~lea the Dair :or-elat:on funct:on ino

denenas iniv on r -r ±ue to translational :nvariance of the system maer

zinsidersaton.

Ae assume that the conerent fieid propagates n he same direction as the :nziaent

field w:th a new, effective 4avenumDer K that :s -omnlex and rjuencv :evendent.

Hence

where A is the a=-litude of the ,zonerent .ave. Thus the average exci::ng ":e-;

coefficient

The -= te thatm :nmi, "t.se a:un.5 :nexl

e onecker deitas sEq. :[7 -nd:cae :hat on-, :e azimuthal -ndex m-1

contributes, since the coherent 4ave propagates in the :-irect:on an those ,n :ne

square bracket indicate that there is no de.olari:ation.

Equations iI4.-(l) are substituted :n Ec :1. Since the 7-rratr-x of i rctat::nal

symetric scatterer is block diagonal in the a:imuthal index see 
4
aterman ia

the coherent field propagates in the :-direction, the sums associatea =itn the

azimuthal indices of the super indices n' and n" in Eq. (13) are remove,;. Further,

as shown in previous work by us5 as well as TwerskyI. the extinction theorem can te

used to cancel :the incident wave te= in EG. (1i3 with the contribution of the

integral at :nfinity. Finally Eq. CISJ can be ar:tten Ln :he foM

" 3 -C, , ,

wnere

l 2 aj.,Kal 2ha'. - Kah., ka'" : Ka

4c x -11 n. kxj, 4Kx dx

iad
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In Eq. (19) c * n a is the effective spherical concentration of the particles

30
and in Eq. (2 0) [31 32 )3 is the Wigner 3-2 .abl

L 2 3~

If the integral in Eq. (19) can be evaluated for suitable models of the pair

correlation function, then Eq. (18) is a set of coupled, homogeneous, a4gebraic

equations for the coherent field expansion coefficients. For a non-trivial solution,

the determinant of the coefficient matrix must vanish. This yields the required

dispersion equation for the effective or average medium. In general the system of

equations can be solved only numerically to yield the effective wave number a as a

function of frequency (k-./c) which is complex (K • K IiK 2 ). The real part KI

yields the phase velocity in the medium and the imaginary part K, leads to damping

of a propagating wave due to geometric dispersion as well as real losses if any,

associated with the discrete particles. We now proceed to consider the evaluation

of the integral in Eq. (19).

The Percus-Yevick pair correlation function

The pair correlation function for an ensemble of particles depends on the nature and

range of the interparticle forces. The average of several measurements of a

statistical variable that characterizes an ensemble will depend on the pair

correlation function. AS we have seen, the coherent or average electric field in an

ensemble of dielectric scatterers depends on the pair correlation function CEqs. .18)-

(19)). To obtain expressions for the pair correlation function, one needs a

description of the interparticle forces. In our case we assume that the dielectric

scatterers behave like effective hard spheres (where the radius 'a' is that of the

sphere circumscribing the scatterer). Percus and Yevick have obtained an

approximate integral equation for the pair correlation function of a classical fluid

in equilibrium. Wertheima has obtained a series solution of the integral equation

for an ensemble of hard spheres. The statistics of the fluid are then same as those

of the ensemble of discrete hard particles that we are considering.

Although integral expressions for the correlation functions also result in a

heirarchy. Perus and Yevick have truncated the heirarchy by making certain

approximations that result in a self-consistent relation between the pair correlation

function I(x and the direct correlation function C(x). The direct correlation

'1,I



functi n may be interpreted as the zorrelation function result:ng from an 'external

potential' that produces a simultaneous density fluctuation at a point and the

external potential is takxen to be the potential seen zy a particle given that there

is a particle fixed at another site. Fisher
13 

comments that the Percus-Yevick

approximation is a sfrong statement of the extremely short range nature of the

direct correlation function. The integral equation has the form

".(x) * I - no x<la I "x')dx' - no t~x')t(x-x' dx (2l1
't-''2a

li-' <a

where

T(X) g(x) x ' 21

g(x) - 0 ; x < 2a

S(x) - -C(x) x < 2a (22)

C(x). 0 x > Za

WertheiA has solved the integral equation by Laplace transformation that results in

an analytic expression for C(n) in the form

C(X) * -(_-) [(1-,") - 6ri(-t'n) X . i(1.2n) x'/2] n; n c/S (23)

where 'c' is c.te effective spherical concentration of the particles. The Percus-

Yevick approximation fails as the concentration approaches the close packing factor

for spheres and is expected to be good for c < 0.3 or 0.4.

Equation (23) can be substituted back into Eq. (21) to yield a series solution for

g(x) in the form
8

gWx r:~x)(4)

n.1

where

1() t -t x-n)

gnCx) 1 t [L(t) S(t)]n tdt (25)

where

S( ) .)t
$ 

- 6n(l-n)t
2 

* 1sn t-12n(I-2n) (26)

and

L(t) • 12n (1..In2)t - (1.2n)]. (:7)

Throop and Searman
9 

have tabulated g(x) as a function of x for values of n • c/S. A

few representative plots of the pair correlation function are shown in Fig. Z. These

tabulated values were used in evaluating the integral in Eq. (19).

t4. ..
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Comparison of WSA and P-YA

The homogeneous system of algebraic equations for the effective exciting field %ere

solved numerically for two different models of the correlation integral I appearing

in Eq. (18). In eq. (19) if the second term is set equal to zero, we just have a

system of uncorrelated hard particles. This is what we have referred to as the well

stirred approximation (WSA) earlier. Computations were also performed by numerically

evaluating the integral in eq. (19) by Using the tabulated values of the Percus-

Yevick approximation to the pair correlation functions provided by Throop and
9

teerman

In Fig. 3, the specific damping Sd * 411 K2/KI is plotted as a function of concentration

for a random distribution of numerical ice particles (cr ' 3.168) in free space at

kas 0.53. The WSA agrees with the P-YA solution only up to concentrations

C 0.07S and then there is a marked difference and the WSA fails completely at

C ' 0.12S leading to unphysicaL results. In Fig. 4, the calculations are repeated
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to C 0.1 and in Fig. 5 similar calculati.ons were performed for polyethylene spheres
( r •2.26) at ka - 4.62. For this case 0SA and P-YA results agree u to C 0.15.

Fro these results it would appear that although the WSA is very poor at higher

scatterer concentrations, the results improve draatically at higher values of ka,
ielding resonabLy r o results or higher concentrtions. he ntura l explanation

is th t at haher values o ka, multiple scaterin. effects between pairs o pailes

become sall r and thus psimilar celation eecs are not s nifcant and the p also

bcomes -,,e exat. Bu for trbis caoncentrtion and requency e s tosaer C o se

the P rcustYdvdack atpproximatoon.

The e ective ielect ri t constant

Once the effective complex wavenumber K has been computed by solving Eq. (18)

numeTically, we can proceed further and evaluate the effective dielectric constant of

the medium which is also comOlex and frequency dependent. In the usual way, the

dielectric constant r;(W) of the random medium is defined as

r;W k 1; C(w) -a lw

where €I and t, are the real and Lasginary parts of the dlelectrIc constant and the

*6
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effective dielectric constant effective dielectric constant
for a system of polyethylene for a system of spherical

spheres ice particles

subscript on C; denotes 'relative to the matrix medium'. The real part el is related

to the refractive index and phase velocity in the artifical medium and the imaginary

part 2 accounts for the damping in the medium. In real materials, the damping is

intrinsic to the system and is due to macroscopic viscosity of the dielectric. For

the artificial or effective medium under consideration, in addition to natural

losses there is damping due to geometric dispersion or scattering.

Cole and Cole
14 

have given a convenient representation of the dispersion and

absorption in a dielectric by means of an Argand diagram or a plot in the complex

C-plane of 1 versus C2 ' each point of the plot being characteristic of a particular

frequency. For many types of loss mechanisms, the locus of the points is a semi

circle with its center on the real axis or a circular arc. In Ref. 14. the complex

dielectric constant of several liquids and solids is plotted conforming to the

circular arc.

In the present case the complex dielectric constant t(w) corresponding to the

effective wavenumber K of the effective medium is studied for several values of the

frequency. Overall results show a dramatic deviation from the circular are locus.

This is to be expected since the medium is artificial.

.iI
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In Fig. 6 the complex plane locus of the relative dielectric constant of a random

distribntlan of polyethylene spheres in -free space is presented at a concentration of

26%.. The calculations were done using the Percus-Yevick approximation (P-YA) for

tho pair correlation function from ka - O.OS to 4.OS. Xs can be seen, the figure

beat% no resemblance to a circular arc locus. By extrapolating the locus at the low

value of ka, one can find the intercept on the Re c;axis which is equal to the static

dielectric constafit of the effective medium. Since the dielectric constant of the

spherical particles is assumed to be real, the effective medium shows no absorption

at low frequencies. The static dielectric constant thus obtained will correspond to

the one that can be obtained from mixture theory. In real media displaying a

circular are locus the high frequency value of e* also intercepts the real axis and

this yields the optical limit or c for the material. In our case, it is not at all

clear at what value of ka, if at al1, the locus will intercept the real axes.

In Figs. 7,8 and 9 the complex plane locids of the effective aielectric constant of

spherical and oblate spheroidal ice particles is presented where 'a' and 31 are the

semi major and semi minor axes respectively. They zll show marked deviation from the

circular arc locus and it is unclear what c. will be for these effective media.



At the present time there are no experimental results available to verify these

zalculations. The practical applications of these computations ire many. Such

calculations will provide reasonable estimates of the frequency dependence

dielectric constant as a function of particle concentration, size and shape for

inhofogeneous media.
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